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ABSTRACT

The annealing algorithm is a popular Monte-Carlo algorithm for combina-
torial optimization. The annealing algorithm consists of simulating a nonsta-
tionary finite state Markov chain whose state space is the domain of the cost
function, called energy, to be minimized. The degree of randomization in the
annealing algorithm is controlled by a parameter, called temperature, which is
slowly decreased to zero. The convergence in probability and the rate of con-
vergence of the annealing chain for the special case of an energy function
with two local minima is analyzed. The sample path properties of annealing
chains (with arbitrary energy functions) are examined. A modification of the
annealing algorithm which makes noisy measurements of the energy function
is given. The annealing algorithm is extended for optimization on general
spaces.

~

A

The Langevin algorithm is a popular Monte-Carlo algorithm for multivariate
optimization. The Langevin algorithm consists of simulating a nonstationary
diffusion process. The relationship between the annealing and Langevin algo-
rithms is studied. It is shown that an annealing chain driven by white Gaus-
sian noise and interpolated into a piecewise constant process converges
weakly to a time-scaled Langevin diffusion. Motivated by this result, a hybrid
annealing/Langevin algorithm is proposed.
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N N, the natural numbers
; .
": B, r-dimensional Euclidean space
A
K
+ B’, Borel subsets of B
"
'. C*|0,T), R-valued continuous functions on [0,T]
N
8
N D*[0,T], B-vaiued cddldg functions on {0,T]
i:,,
= N(m,A) (*), Normal measure with mean m and covariance A 4
w3 ‘
X X(*), indicator function of the set A
N B(a,R), ball of radius R centered at a
Ry '
iy Ix], Euclidean norm of x
)
]
; (x,y), Euclidean inner product of x,y ]
¥
A, x& y, Euclidean outer product of x,y
)
l;:
, a.e., almost everywhere
:}:
't
hX w.p.1, with probability one
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CHAPTER 1 o
INTRODUCTION
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Algorithms for finding a global extremum of a real-valued function may
be classified into two groups: deterministic and random. The distinction here
is of course that the random or Monte-Carlo algorithms make use of pseudo '.;4-:.;
random variates whereas the deterministic algorithms do not. The earliest ey
global optimization algorithms were of the deterministic type and were
associated with evaluating the cost function at points on a grid. One t{:;f:‘,
drawback of these methods is that they typically require certain prior
information about the cost function such as a Lipshitz constant. Most global
optimization algorithms are of the random type and are related to the so-
called multistart algorithm. In this approach, a local optimization algorithm
is run from different starting points which are selected at random, usually
from a uniform distribution on the domain of the cost function. See [5], [29)
for a discussion of global optimization algorithms.

Recently, motivated by hard combinatorial optimization problems such
as arise in computer design and operations research, Kirkpatrick et. al. {19]
and independently Cerny (3] have proposed a different kind of random
algorithm called stmulated annealing. The annealing algorithm is based on an
analogy between large scale optimization problems and statistical mechanics.
For our purposes this analogy consists simply of viewing the cost function as
an energy function defined on a finite state space of an imaginary physical

system. The annealing algorithm is then seen as a variation on a Monte- :;i:;.
Carlo algorithm developed by Metropolis et. al. [25] for making statistical ':":::.:
mechanics calculations, which we now describe. It is well-known that the ::":"-..
states of a physical system in thermal equilibrium obey a Gibbs distribution }f.}‘;}
o< exp[—U(*)/T], where U{*) is an energy function and T is the temperature. »
The Metropolis algorithm was developed for obtaining samples from such a ':_-;:3;"
Gibbs distribution and for computing estimates of functionals averaged over ;t::;:’
the Gibbs distribution. The Metropolis algorithm proceeds as follows: r'\_;r_::v_{j
|.. ‘~
’l ’-".
Given a state i of the system, select a candidate state j in a random °
manner corresponding to a small perturbation of the system, and ::.:_,:,.
AN
NN
R
\:.':l-‘;ﬂ
f'r"-"ﬂ
o
[
-"\.f\‘:i
-..\ L
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compute the change in energy AU =U(j) — U(i). If AU < 0 accept
state j as the new state for the next iteration of the algorithm. If
AU > 0 accept state j with probability exp[— AU/T}; otherwise the
algorithm starts at state i for the next iteration.

The annealing algorithm consists of identifying the cost function to be
minimized with the energy function U(*) and taking the temperature T as a
function of time and slowly lowering it to zero. Suppose that the distribution
of a candidate state is independent of past states given the current state.
Then it is clear that the Metropolis algorithm simulates the sample paths of a
Markov chain, and it can be shown that if the candidate states are selected
in a suitable manner then this chain infact has a Gibbs distribution
o exp(— U(i)/T] as its (unique) equilibrium distribution (see Chapter 2 for
details). Furthermore as the temperature T is decreased to zero the Gibbs
distribution concentrates more and more on the lower energy states. The
motivation behind the annealing algorithm is that if T—0 slowly enough such
that the system is never far away from equilibrium, then presumably there is
convergence (in some probabilistic sense) to the global minima of U(*).

The annealing algorithm stands in contrast to heuristic methods for
combinatorial optimization which are based on iterative improvement,
allowing only decreases in the cost function at each iteration. Iterative
improvement algorithms in statistical mechanics terms correspond to rapidly
quenching a system from a high to a very low temperature. Such quenching
can result in the system getting trapped in a so-called metastable state, and
analogously the iterative improvement algorithm getting trapped in a strictly
local minimum of the cost function. On the other hand, the annealing
algorithm corresponds to slowly cooling a system. Such cooling should result
in the system spending most of its time among low energy states and
analogously the annealing algorithm finding a global or nearly global
minimum of the cost function.

The annealing algorithm as described above is suitable for combinatorial
optimization. Motivated by optimization problems with continuous variables
which arise in image processing problems, Geman and independently
Grenander [13] have proposed a diffusion-type algorithm called the Langeuvin
algorithm (as coined by Gidas [11]). Consider the diffusion solution of the
Langevin equation

dx(t) = — VU(x(t))dt + V2T dw(t)

where U(*) is now a smooth function on r-dimensional Euclidean space (again
called energy), T is a positive constant (again called temperature), and w(*) is

- W
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a standard r-dimensional Wiener process. The Langevin equation describes ::
the motion of a particle in a viscous fluid. The Langevin algorithm consists of )
g identifying the cost function to be minimized with the energy function U(*) :5 )
and taking the temperature T as a function of time and slowly lowering it to :{
. zero. Now it is well known that under suitable conditions on U(*) the Vs
diffusion solution of the Langevin equation has a Gibbs density
o< exp[— U(*)/T] as its (unique) equilibrium density, and as the temperature T D%,
is decreased to zero this density becomes more and more concentrated on the :f-
lower energy states. Like the annealing algorithm, the motivation behind the :j
Langevin algorithm is that if T—0 slowly enough such that the system is E"
never far away from equilibrium, then presumably there is convergence (in -
some probabilistic sense) to the global minima of U(*). ﬁ :
The annealing algorithm has been applied with varying success to a wide ,. :
range of problems including circuit placement and wire routing for VLSI chip ;
design [19], image reconstruction [8], and assorted hard combinatorial )
problems which arise in operations research {3], {12}, [18], [19]. There has also
been intense theoretical interest in both the annealing algorithm [8], [10], [11], f:'_'-
(14], [15], [26], {31] and the Langevin algorithm [4], [9], [11], [15], [21]. -

The goal of this thesis may simply be stated as the analysis of the
asymptotic (large time) behavior of simulated annealing type algorithms, by
which we mean not only the annealing algorithm but also the Langevin and
related algorithms. We are particularly interested in the relationship between
the annealing and Langevin algorithms. Here is a Chapter-by-Chapter
outline of the thesis.

In Chapter 2 we discuss the finite state annealing algorithm as proposed
by Kirkpatrick and independently by Cerny. In 2.1 we give a precise
description of the annealing chain (the Markov chain whose sample paths are
simulated in the annealing algorithm). We then briefly discuss two numerical
studies of the annealing algorithm by Jobnson et. al. [18] and Golden and

Skiscim [12], and next describe some of the large body of theoretical work on M
the subject with particular emphasis on the work of Mitra et. al. [26] and %
Hajek [14]. In 2.2 we study the asymptotic behavior of a class of '-;‘
nonstationary finite state Markov chains in preparation for the analysis of the ik
anpnealing algorithm itself. In 2.3 we use the results of 2.2 to analyze the 27
annealing algorithm. We first examine in depth the convergence in ::_f
probability and the rate of convergence of the annealing chain to the globally \f.
minimum energy state for an energy function with two local minima (one ::::

scale combinational problems may have large numbers of local minima, the

strictly local and one global). Although cost functions encountered in large ®
‘
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%
results we present are new and offer some interesting insights. We next 7
perform a sample path analysis of the annealing chain and obtain conditions
under which the annealing chain visits the set of global minima of the energy i
function with probability one, visits the set of global minima with probability ) o
strictly less than one, or converges to the set of global minima with QT‘_'
probability one. These results are different than most of the analytical results R
on the annealing algorithm, which give conditions under which the annealing )
chain converges to the set of global minima in probability. In 2.4 we describe BN
and analyze a modification of the annealing algorithm which uses noisy 5‘
" measurements of the energy function. “_:
In Chapter 3 we extend the annealing algorithm for optimization on B
general spaces. In 3.1 we give a precise description of a general state e
annealing chain. In 3.2 we discuss the ergodicity of the general state -
annealing chain at a fixed temperature, i.e., we discuss a general state version :-:_
of the Metropolis algorithm. Here we settle some technical issues which do ;v
not arise in the finite state Metropolis algorithm. In 3.3 we study the [
asymptotic behavior of a class of nonstationary general state Markov chains .-;
in preparation for the analysis of the general state annealing algorithm itself. t:
In 3.4 we use the results of 3.3 to extend the result of 2.3 on the finite state ::
annealing chain visiting the set of global minima of the energy function with L
probability one to the general state case, essentially under the conditions that N
the state space be a compact metric space and the energy function be ’ ::“
continuous. It is not known whether convergence to the set of global minima i_
in probability can be obtained under such weak conditions. 5:
In Chapter 4 we discuss the Langevin algorithm as proposed by Geman
and independently by Grenander. In 4.1 we give a precise description of the Z:j:
Langevin algorithm and summarize the convergence results of Geman and ';',:
Hwang [9], Gidas [11], and Kushner [21]. In 4.2, 4.3 we present what we o
believe to be the most interesting results of the thesis. In 4.2 we show that an o
annealing chain of the type considered in Chapter 3 with r-dimensional ‘.
Euclidean state space and driven by white Gaussian noise converges in a ot
certain sense to a Langevin diffusion. In 4.3 we propose a hybrid ::::
annealing /L.angevin algorithm based on the results of 4.2. We argue that the S" Y

hybrid algorithm enjoys the advantages of both the annealing and Langevin
algorithms. Unfortunately, we have not yet succeeded in establishing the
convergence of the hybrid algorithm and this is left as a future task. -

r

L e T 2 T O

o

In Chapter 5 we collect the results of the thesis and make some

concluding remarks. '
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CHAPTER @1
FINITE STATE ANNEALING TYPE ALGORITHMS

2.1 Introduction to the Annealing Algorithm

In Chapter 1 we briefly described the annealing algorithm and discussed
the heuristic motivation based on the connection that Kirkpatrick [19] has
suggested between statistical mechanics and large-scale optimization
problems. Mathematically, the annealing algorithm consists of simulating a
nonstationary finite-state Markov chain whose state space is the domain of
the cost function (called energy) to be minimized. In this Section we shall
discuss in detail the annealing algorithm and describe some of the
considerable literature which has been devoted to its analysis.

We first give some standard finite state space Markov chain notation (c.f.
(8], [7]). Let ¥ be a finite set. P = |p;; ;s is a stochastic matrix on ¥ if
p;j > O for all i,j€X and

JEL
{plk+1)y — {{p¥**1)]} are the 1-step transition matrices for a Markov chain
{€.} with state space T if for every k€W P***1) is a stochastic matrix on &
and

P =il =1} =p{**) (i P{& =i} >0) (2:1)
for all i,jEL. Conversely, given a sequence {P**+1)} = {[pigk'“d)]} of
stochastic matrices on ¥ we can construct on a suitable probability space
(A,F,P) a Markov chain {£} with state space ¥ which satisfies (2.1). For
each d€N let

plkk+d) _ plik+1) . ... . plk+d-1k+d)

plki+d) - [pigk'k+d)] is a stochastic matrix on ¥ and

P{€sa =il =i} =p{**9  (if P{& =i} >0)

for all i,j€X. It will be convenient to have a fixed version of the conditional
probability of &, 4 given £, which we define by

“
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P{6.q€AlE = i} = T pfF*?)
JEA

for all i€X and ACY. /
We now define the annealing algorithm. Let U(*) be a nonnegative ,
function on X, called the energy function. The goal is to find a point in ¥ ::::

which minimizes or nearly minimizes U(*). Let {T,} be a sequence of positive :
numbers, called the temperature schedule. Let Q = [q;;] be a stochastic matrix o
on X. Now let {§} be the Markov chain with state space £ and 1-step b
transition matrices {P*¥+1)} = {[p(k k+1)1) given by :'_"
~ 3
(j) = U(i) . . . :
q;; exp |— U : if U(3) > U(i) o
Tk ~]

o~

plk+t = g it UG) S UG, j4 (2.2) 2

a
1— 2 pi$k'k+l) if j=1i oy

i -

for all i,j€E. {&,} shall be called the annealing chain. For each dEN let b
d= [qigd)]. Recall that Q is srreducible if for every i,jEX there exists a dEN ::::
such that qigd) > 0. Also, Q is symmetric if q; = q; for all i,jEX. In the .
special case where Q is irreducible and symmetric and T, = T, a positive vy
constant, {} is the stationary Markov chain introduced by Metropolis et. al. '.:’_:
(25] for computing statistics of a physical system in thermal equilibrium at 7]
temperature T. It was Kirkpatrick et. al. [19] and Cerny [3] who suggested ;.
that the Metropolis scheme could be used for minimizing U(*) by letting o
T = Ty — 0. We shall call the algorithm which simulates the sample paths N
of {£,} with T, —0 the annealing algorithm. -2
The heuristic motivation behind the annealing algorithm was discussed ;\
(briefly) in Chapter 1. Here we give the motivation in more mathematical .
terms. Suppose that Q is irreducible and symmetric, and let {EE} be the o
stationary chain with 1-step (stationary) transition matrix PT = [pi'jr] given by )
the r.h.s of (2.2) with T, = T, a positive constant. Then it can be shown that ]
PT has an invariant Gibbs vector [1T = (1] (a row vector), i.e., g
nT =ntpT ~

SN

where BN
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1 _ _exp [~ UG/T]

'S exp [— UG)/T)
JEL

v ied .

This follows from the detailed reversibility
WiTpi'jr = Wijj’ir v ijeX .
Furthermore, Q irreducible and symmetric implies that {6;{} is an irreduciblet

(and aperiodic) chain and by the Markov Convergence Theorem (6, p. 177]
lim P{T =i} =nT viex. (2.3)
—+00

Let S be the set of global minima of U(), i.e.
S = {ieX: U(i) < U(j) Vjex}.
Now

Jim ml=m  Viex (2.4)

where I1" = [r'] is a probability vector with support in S. In view of (2.3)
and (2.4) the idea behind the annealing algorithm is that by choosing
T = T —0 slowly enough hopefully

T,

P{{ =i} R m (k large) (2.5)
and then perhaps
Jim P{g =i} = T YiED (2.6)

and consequently &, converges in probability to S.

In Chapter 1 we roughly described the procedure by which the sample
paths of the annealing chain are simulated. It is seen that the Q matrix
governs the small perturbations in the system configurations which are then
accepted or rejected probabilistically depending on the corresponding energy
changes and the temperature. More precisely, the annealing chain may be
simulated as follows. Suppose £ =i. Then generate a X-valued random
variable n with P{n = j} = q;j. Suppose n = j. Then set

tA stationary chain is irreducible if its 1-step (stationary) transition matrix is
irreducible.
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.:("v

s
u'.-
i,
Ay,

i it UG < U '

Eee1 = {i  if UG) > U(i) with probability exp [— -Ii(iLT‘—UQl :

k ::

. n

i else v

There are two in depth numerical studies of simulated annealing of which :

we are aware. Johnson et. al. [18] applied the annealing algorithm to four :'
well-studied problems in combinational optimization: graph partitioning, R
number partitioning, graph coloring, and the travelling salesman problem. f_‘-
They compare the annealing algorithm with the best of the traditional e
algorithms for each problem. They found that although annealing is able to N
produce quite good solutions on three of the four problems, only on one of the f.::
four (graph partitioning) does it outperform the best of its rivals. Golden and '5-'.:
Skiscim [12] have tested the annealing algorithm on routing and location Y

problems, specifically the travelling salesman problem and the p-median
problem. They conclude that there are more efficient and eflective heuristics
for these problems.

-

We shall now outline the convergence results on the annealing algorithm
which are known to us. We refer the reader to the specific papers for full
details.

(1 TR

Geman and Geman (8] were the first to obtain a convergence result for

the annealing algorithm. The consider a version of the annealing algorithm ot
. S

which they call the Gibbs sampler. They show that for temperature schedules -~

of the form ,’.
Ty = — (k large) =

k log k & ’

that if c is sufficiently large then (2.6) is obtained. '.:;
Gidas [10] also considers the convergence of the annealing algorithm and :
similar algorithms based on Markov chain sampling methods related to the ::'_‘"
Metropolis method. N
We next discuss the work of Mitra et. al. [26]. The idea behind their ‘_‘,:
work is similar to that of Geman and Geman and also Gidas in that they :
show that for temperature schedules which vary slowly enough the annealing :':,
chain reaches ‘‘quasiequilibrium”, i.e., something like (2.5) holds. In order to :';
state Mitra et. al.’s result we will need the following notation. Let e

L
By

[ 4

0
-
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N(i) = (iEZ: q; >0} Viex.
Let Sy be the set of states that are local maxima of U(*), i.e.,
Sy = {iES: U() > UG) vV jeNG)) .
Let

r = min max d(i,j)
IEC\Sy JET

where d(i,j) is the minimum number of steps to get from state i to state j.
Finally, let

L = ) — U] .
max max fUG) — ()|

Here is Mitra et. al.’s result:

Theorem 2.1 {Mitra et. al. [26]) Assume Q is irreducible and symmetrict.
Let T, |0 and

o r
Y exp |[— = 00. (2.7)
Then
] lim P{{, =i} =7  Viex. (2.8)
k— o0
Remarks
(1) If T, = c/log k then (2.7) holds if ¢ > r L.
(2) An estimate of the rate of convergence in (2.8) is obtained for
annealing schedules of the form T, = ¢/log k for ¢ > r L. Let
w = min min ,
€S )EN() 4
= min U(i) — min U(j) .
7 1€EX\S ( ) JES (J)
It ie shown that
. . 1
Pl =i}l=m +0O ;‘m) as k— (2.9)
. where
. tor just q;; > 0iff q); > O for all i,JEL
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5___1

a = ,
e L/e c

Since o and 3 are increasing and decreasing respectively with increasing c, it
is suggested that ¢ > r L be chosen to maximize min{c,3}.

We next discuss the work of Hajek [14]. The idea behind his work is
that for temperature schedules which vary slowly enough, the annealing chain
escapes from local minima of U(*) at essentially the same rate as for a
constant temperature. In order to state Hajek’s result we will need the
following notation. We shall say that given states i and j, i can reach j if
there exists a sequence of states i =i, i, =] such that q_; >0 for all
n =0,._,p—1; if U(i;) <E (a connegative number) for all n =0,...,p then we
shall say that i can reach j at height E. We shall say that the annealing
chain is strongly irreducible if i can reach j for all i,j€EX. Clearly, strong
irreducibility is equivalent to Q irreducible, but we introduce strong
irreducibility to conform with Hajek’s notation. We shall also say that the
annealing chain is weakly reversible if for every E > 0, i can reach j at energy
E iff j can reach i at energy E, for all i,jEX. Let S, be the states that are
local minima of U(*), i.e.,

Sm = {iEX: U(}) <U([)  VjeN()} .
For each i€S\S let A(i) be the smallest number E such that i can reach some
JEL with U(j) < U(i) at height U(i) + E. A(i) is the ‘““depth’ of the local (but

not global) minimum i. Let

A= Al . 2.10
max (i) (2.10)

Here is Hajek's result:

Theorem 2.2 (Hajek [14]) Assume that the annealing chain is strongly
irreducible and weakly reversible. Let T, }0. Then

klim P{&€S) =1 (2.11)
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Remark If T, = c/log k then (2.12) and hence (2.11) holds iff ¢ > A". For
this reason A" has been called the optimal constant and Ty = A /log k the
optimal schedule.

We should also mention that Tsitsiklis [30] has proved of generalization
of Theorem 2.2 which does not assume weak reversibility, using (and
extending) the theory of singularly perturbed Markov chains.

In view of Theorem 2.2 and the refinement in (30], the analysis of the
convergence in probability of the annealing algorithm is essentially complete,
with the exception that it does not appear that anyone has determined the
rate of convergence for optimal or nearly optimal temperature schedules.
Recall that Mitra et. al. have shown that (2.9) holds if

c

Te= logk '’
but r L is in general much larger than A'. In 2.2, 2.3 we shall analyze the
rate of convergence in probability of the annealing algorithm for a special
case with two local minima. We will obtain results on the convergence rate
for nonparametric temperature schedules (schedules not of the form
T, = ¢/log k) and also for temperature schedules T, = ¢/log k for ¢ > A"

c>rlL ,

We remark that in the latter case with ¢ = A" there is apparently some
interesting and unexpected behavior. Our results are different although
consistent with (2.9).

Also in 2.2, 2.3 we shall explore the sample path behavior (as opposed to
the ensemble behavior) of the annealing algorithm. We shall give a number
of results, the most important of which is conditions such that the annealing
chain visit the set S (infinitely often) with probability one. Suppose we let

6 =&
[Ekﬂ if U(&h1) < Ulg)
kv1 =
Sk else .

Note that if {£} visits S with probability one then {¢} traps in S with
probability one, and furthermore no additional evaluations of U(*) are
required to compute {¢ } over what are required to simulate {{,}. Hence by
just doubling the memory requirements and keeping track of {¢}, it seems
sufficient to show that {&, } visit S with probability one rather than converge
to S in probability. Now it might be imagined that the conditions on the
temperature schedule under which {{ | visits S with probability one are
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weaker than those under which {£,} converges to S in probability. However,
the proof of Theorem 2.2 shows that (assuming strong irreducibility and weak
reversibility) {&} visits S with probability one iff (2.12) holds. From this
point of view our result does not offer anything new; infact the temperature
schedules we consider are not even optimal. However, we believe our result is
important in the following senmse. In Chapter 3 we extend the annealing
algorithm to general state spaces. It turns out that our result on the finite
state annealing chain visiting S infinitely often with probability one can also
be extended, essentially under the condition that the state space be a
compact metric space and the energy function be continuous. It is not clear
whether convergence to S in probability can be shown in such a general
setting; the methods used to analyze the finite state case (quasiequilibrium
distributions, large deviations and perturbation theory) do not seem directly
applicable.

Finally, in 2.4 we give a modification of the annealing algorithm which
allows for noisy measurements of the energy function and examine its
convergence.

2.2 Asymptotic Analysis of a Class of Nonstationary Markov Chains

In this Section we analyze the asymptotic properties of a certain class of
nonstationary (finite state) Markov chains. These chains will have the
property that their l-step transition probabilities will satisfy bounds similar
to those satisfied by the d-step transition probabilities of the annealing chain.
The results of this Section will be used in 2.3 to deduce corresponding
asymptotic properties of the annealing chain.

We shall consider the following class of Markov chains. Let ¥ be a finite
set. Let q;;, §;; € (0,00 for i,jEL, and {6} a sequence of real numbers with
0 <6, <1 Let {§)} be a Markov chain with state space £ and 1-step
transition matrices {PI¢k+1)} = {[pi(Jk'k”)]} with the following property: there
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exists positive numbers A, B such that EN
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pigk’k+l) 2 A ek ij (2.13) “':r
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e < B 6" (214

3
for all i,j€X. Actually, we shall assume that (2.13) and/or (2.14) hold N
depending on the result we wish to prove. o
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2.2.1 Convergence in Probability and Rate of Convergence for a
Three State System

We now establish the convergence in probability and rate of convergence
of a Markov chain {{,} with state space X which satisfies (2.13) and (2.14) for
. a special case with |£|=3. In 2.3.2 we shall apply this result to the
annealing chain with an energy function which has two local minima. It will
be useful here to consider the more detailed bounds

Ayfei < plR) < BGT vijer (2.15)
where A;;, B;; are positive constants. Here is our theorem.

Theorem 2.3 Let £ = {1,2,3} and assume that (2.15) holds. Let

a = max{a,,, 03} < 00,
b = min{ﬂn, ﬂ13} >a y

Yy=b-a,
min{Ay;, Ay} if op =0y
. 6= 1Ay if oy > oy
A5 if oy < oag.

(a) Suppose that 6,10 and
Y 6 =00. (2.16)
Then
klim P{fk = 1} =1.

(b) Suppose (more strongly) that 6,]0 and there exists a sequence {¢,}
with 0 < ¢, <1 and ¢,—1 such that

k
S 6+ % log 6y — oc as k—oc (2.17)
n o~ k¢,
9k
",
sup < oo, (2.18)
kO
Then
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P{{&=1}=1+4+0(8) as k—oco.

The proof of Theorem 2.3 will require the following lemmas.

Lemma 2.1 Let {s;} be a sequence of positive numbers with s,—0 and

oo

Zsk=oo.
k=1

Then
o) k-1

s [T (1 —8,) <00,

k=1 n=1

Proof Let

k
Sk=25k.

n=1
Now since sy—0 and S —co we have

exp(— Sy_1) = exp(sy) exp(— Sy) < —s%
k

for some constant ¢. Hence

oo k-1 00

Sose IT (1 —s) £ 3 sy exp(— Sy_y)
k=1 n=1 k=1
o0 Sk
S c* 2 —
xo1 SP
< o0

where the convergence of the last series follows from the Abel-Dini Theorem
20, p. 290]. O

Lemma 2.2 Let b > a > 0 and assume that 6,0 and

- pa
2 9k = 00 . (2.19)
k=1
Then
TR R L L AR L L P I PN TS PLIN -fw__'-'.\_\__'.._‘\’\_\'.'\'_\('- e _'.“_\.".'_". _,'.‘
S A I A A s A A S R A S R N R S R R |
Lot A St T Pt o Pt SO A A G L S B L A O

WHRENN WU AT R E ™A E TR VU " 7L o —‘v

g

»
<

> e
Py

“r v

r

]

LSS AT
Ay A A0y,

NSNSy
P

(%

N

X

)

oL

u,
-
* <

‘-‘."ﬁ

Y

‘l

PAAS

L'y

l’".




o el fah e a8 Cal Vol Pal Va® o8 ' Cam 04l N8Rt . l‘vlll‘l.l.' UL WU WU WP J I WU ¥

23

k k L
lim $ 65 1 (1-63)=0. &

w -
m=1 n=m-+1 {s
Proof Let by

b= 65 T (1—63). pal

me=1 n=m-+1

Let s, = 62. Then for KEN RS

N NN
.

k b/a k
Px = 2 Sm H (l_sn)
me=1 n=m-+1
k k k
SK s [T (M=s)+ 84 ¥ sm [ (1-8) Vk>K,

n=K m=] n=m+1

‘.-"n"\x"l
araly JAON

where Yy =b — a > 0. Hence

A%

k k
liin sup p < 4 sup Y sp [T (1 —sg) (2.20)
—00

m=1 n=m-+]1

... -.‘ . “, ..- A
» O]

since

e

IT(~-s)=T] 1-6)=0

n=K n=K
which follows from (2.19). Now

L]
P N
. a4

AR

T

s'{\

k k k m-1 :’_.-;‘

Ysm [T (T--sp)= 3 sn IT (1 —sy) =
m=1 n=m-+1 me=]1 B=1 ~ ..

which is established by induction on k. Hence by Lemma 2.1 '.:\
k k _::-_ :
sup ¥ sy, [ (1 —sy) <oo. (2.21) N

k me=1 n=m-+1 .,»\"

S
Combining (2.20), (2.21) and letting K—oo (so that ¢, ,—0) gives p,—0 as o
required. O o
"

Lemma 2.3 Let b>a >0, y=b —a, and assume that 6,|0 and there 2\
exisi3 a sequence {¢;} with 0 < ¢, <1 and €, —0 such that -

ke

sup < oo. (2.22)

kO
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|
f
¥
o
SR ¥
5 62 T (1—062)=0() as k—oo -
m-k'ek n=m-+1 . &
o~
)
Proof Let o
2
k b k a hay
=¥ m II (1-62). .
m=ke, n=m+1] R
Let s, = 6. Then T
k b/a k —‘..‘
Px= 3 Sn IT (1—s,) "
m-k.(k n=m-+1] .
S
<O s I (1—sy). (2.23) 3
“ m=1 n=m-+1 b
3
Ao
Now ®
k k k m-1 -7
Y sm ]I (1 - sn) = 3 sp [] (1 — 8p) -4
m=] n=m+1 me=] n=1 S.
which is established by induction on k. Hence by Lemma 2.1 there exists a '_:;:—
constant c; such that “
k k D
Ssm I (1—s,)<e. (2.24) i
m=1 D=m+1 - N: X
Also from (2.22) there exists a constant ¢, such that ::;‘
®
Hg_ek <e, 6. (2.25) -
Combining (2.23)-(2.25) gives p, = O(6y) as required. O "
Proof of Theorem 2.3 ..'-:
(a) Define the events 2
a2
n W
Como = N {&E{23})}  Vo>m, (2.26) e
=T i
n = {Em = 1} N Cxn+1,u Von>m. (2'27) .,-'
SR
Then A
k-1 3
{6€{28}} =C U U Dy g
m=1 . 2y
and BN
s

- -
qf.'v“ ~ '
Ny ,‘\ ~°
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P{6,E(2,3)} =PCpx + 5 PDyy . (2.29)

me=]

Now using the lower bound in (2.15) and the Markov property, for i€{2,3}

k-1
) P{Cm,k|6m=i}SP{Em=i}' H ma§P{€n+l=1|En=j}
nmm I 4
k-1 . .
<1 [1 — min P{£,,,€{2,3}l6, = J}]
n=m =23
< T |1 = min A8
> n]_-__L - }E;g j1¥n
k-1
<e¢ 11 [1——60:] vk >m, (2.29)
nN==m

for some constant c;. Also, using the upper bound in (2.15), the Markov
property, and (2.29)

PDm,k =3 P{Em = 1} pgn,m+l) P{Cm+1,k lEm-H = i}

im2,3
8. k-1
<2 'maxB; 6" ¢, I (1-—0667)
i=2,3 n=m+1
<e 82 ] (1—66%) Vk>m, (2.30)

n=m+1

for some constant ¢,. Hence from (2.29) and (2.16)

x

lim PC] k S ¢ ° H (1 -6 6:)
k—oc0 ! =1
=0, (2.31)
and from (2.30) and Lemma 2.2
k-1 k-1 b k-1
lim ¥ PDpy < lim ey 35 0y I (1—4667)
k—o0 ;1 k—o00 m=1 n=m+1
=0. (2.32)

Combining (2.28), (2.31), and (2.32) gives P{{, = 1}—1 as required.
(b) Define Cpp ;, D as in (2.26), (2.27). Then




k-1
(&3} =0, U U Du,

m-k'ek
and
k-1
P{Ek€{2’3}}=PCk'ebk+ S PDny - (2.33) .
m=kee,

From (2.29) we have

k-1
PCk_ehk <e JI (1 =663
n=keey
k-1
<cexp |— 3 563

n=kee,

a

k
=c,exp (663)exp |- 0| ¥ 6n + s

n=k®ey

log 6, || 6

= o(6y) as k—o0, (2.34)

AR A

NS

PN

ot

where the last equality follows from 62—0 and (2.17). From (2.30) and

Lemma 2.2 v'
~%
k-1 k=1 k=1 T
Y PDpy<e, ¥ 6 I1 (10667
me=kee, mekee, ~ DTEHL P
= 0(6) as k—oo. (2.35)

..
.
PR
y @
W

Combining (2.33)-(2.35) gives P{£, = 1} = 1 + O(6)) as required. O

The following corollary considers a choice of {6} which will be seen to
correspond to a temperature schedule T, =c/log k for the annealing

algorithm.
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Corollary 2.1 Let ¥, a, b, 7, and § be givén as in Theorem 2.3. Assume
that

. 1
ek = kl/c

Tl
o

N

2l

. where ¢ is a positive constant.
(a) If ¢ > a then

x
£

lim P{{ =1} =1.
k—o0

(b) If ¢ > a then
P{& =1} =1+ O(6)) as k—oo.

- w

‘_
5Jl

o
.

(¢) If ¢ =a then

1+ O(8) if v<6
P{, =1} =11+ 0(flogk) if y=4¢
1+ 0(6) if y>6, as k—oo.

AR AR
St

P I
)
) .,\._x-_\"s Sy ,ﬁ

- Proof We shall assume that ¢ = 1; the general case follows easily.
(a) If a <1 then

*s

I

Paof - ;
k=1 k=1 k* X

and Theorem 2.3(a) applies. f}
(b) Suppose a < 1. To apply Theorem 2.3(b) we must construct a L

sequence {€,} with 0 < ¢, <1 and €,~—1 such that conditions (2.17), (2.18) -
are satisfied. Fix 0 < n < 1-—a and let NN

g =1— % (k large) . X

Then for sufficiently large k -




28
k a k 1
> Bn = 3 T
a=keey a=k(1-k™ 0
£k
> [ L
a
k1-k™M X
> npkl=v

after evaluating the integrel and applying the Mean Value Theorem. Hence

k ~
p 0:+:g‘1089k_>_Ukl—‘-"—'a“bgk—’oo as k—oc,

nwkey
and consequently (2.17) is satisfied. (2.18) is also satisfied. Hence Theorem
2.3 (b) applies.

(¢) Suppose a = 1. It is not apparent in this case how to comstruct the
{ex} sequence which is necessary to apply Theorem 2.3 (b). However, we can
directly use (2.28)-(2.30) to get the desired estimate of P{{, = 1}. So, from
(2.28)

k-1
P{§€{2,3,})} =PC;, + ¥ PDy, . (2.36)

me=1

Now from (2.29)

k-1
PCiy < [T (1 —663)

n=1

k-1 1
Sclexp —(S\_‘ -

1
<cexp|—§ [ —dx

Also, from (2.30)

R 2 Y I R X

x X

v LS
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N
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m=] m=1 D=m+1
k-1 k-1 1
<ep 3 —pexpl—6 ¥ —
m=1 p=m+1 B
k
k-1 1
<ep ¥ Lbexp -6 [ = dx
m=] m+1 X
== 5 (m + 1)
k m=1 M
2C2 k-1 1
<
—_ k6 ool mb—6

since (p +q) <p'+q" for p,g>0, 0<r<1. Since §<1 (use §;, =1 in
(2.15)) and b > a =1 we have b — § > 0. Hence

k-1 Ca k 1
z:PDmk<]?-l-+f h$d4
m=1 1 X
1 1
c3'F+c4'F if v#06
=] ) (2.38)
2¢; (1 +log k) * — if ~=

where c3, ¢, are suitable constants. Combining (2.36)-(2.38) completes the
proof of part (¢). O

2.2.2 Sample Path Analysis

We now analyze the sample path behavior of a Markov chain {&,} with
state space ¥ which satisfies (2.13) and/or (2.14). We shall give (different)
conditions such that

+ {&} visits a subset of ¥ (infinitely often) with probability one
* (&} visits a subset of ¥ with probability less then one

* {&} converges to (i.e. eventually stays in) a subset of ) with
probability one
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It will be convenient to use the following notation. For J a subset of 2 define
the events

{EkGJ i.o.} =N U ,{kaJ} ’
n=1 k>n

{£,€J a.a} = nL_Jl kgn {£,€T}

(i.0. and a.a. stand for infinitely often and almost always, respectively).

Our first theorem gives sufficient conditions under which {&,} visits a
subset of X infinitely often with probability one.

Theorem 2.4 Assume that (2.13) holds. Let J be a subset of ¥ and

a = max min o5 < 0. (2.39)
i€T\J jeJ
Suppose
oo
O =00. (2.40)
k=1

Then P{{,€J i.0.} = 1.

Proof Let I = ¥X\J. Using (2.13) and the Markov property
B n~1 .
P N {&E€l} < P{REL} [T max P{§,, €l =i}
ke=m k~m i€l

< nﬁl [1 - ffltlln P{& ,1€JI& = i}]

ke=m

n-1 a.
<TI |1-min 3 A8
k=-m i€l ey

-1
ST (1-A6) VYo>m.

k=m

Hence

P N {&€l) < [11~A8)=0 Vm,

k=m

where the divergence of the infinite product follows from the divergence of the
infinite sum (2.40), and the Theorem follows. O
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The next theorem gives sufficient conditions that {&,} visits a subset of X :;
with probability strictly less than one, at least starting from certain initial ‘
states. Let P,(*) = P{-|§, = i} for all i€L. :\
f..

Theorem 2.6 Assume that (2.14) holds. Let J be a subset of ¥ and ;\
AS

b = max min min J; > 0. (2.41) s
KDJ i€f\K jekK _

Suppose that 6, —0 and -
o

oc b :f

E Gk < . (242) ;-:.

k=1 N

o

Then there exists an i€X. such that

00 ::

P; kul {€T < 1. ~

Proof Let J be a subset of & containing J which obtains the maximum in
(2.41) and let I' = £\J'. Let §€I’. Using (2.14) and the Markov property

AN
s 'l'l'{~

1 * n-1 N
Py N {&EL} > [T min P{& €T |, =i}

7
o
n—1 e . ~
= I1 (1 - max P{én€d'l6 = i}) 3
k=1 i€l -
n—1 :::
> 11 l—maXEBBk oy
k=1 i€l ey o
\.. '
n-1 *1ob -
> [T (1 — Bl 18) Vn . "
k=1 o
Hence °
-
oo oc .f\
Py N {&€} > [T (1 =Bl'J) >0 3
k=1 -1 K
--P
where the convergence of the infinite product follows from the convergence of %
the infinite series (2.42), and the Theorem follows. O -
. .d.
Finally, we give a theorem which gives conditions such that {&,| ;:itj
converges to a subset of ¥ with probability one, provided it visits that subset ;C:
infinitely often with probability one. .
by
®
sy
4‘. . \ . ..\-..\:‘." .'I .-' ._j.._-l ‘- .v ‘-'. '-ﬁ. L \ -* -"‘\'\ .} . _}-'-.-_-.._;h-<-_-.-‘-_'.n_"._;.._". A._ .".'..:A'.-_..:’:_’
&; .::g}i\:_.‘f f.fl_ ‘.,54- -P".r" -. . -:\. g o i ‘\f\_,,\fs_\_,\ﬁ *‘\:‘; Ay _.-.__'.t.__;.',:.',-'.._n_.‘:,'_-.'_;. ‘:,_\,,.:,
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Theorem 2.6 Assume (2.14) holds. Let J be a subset of ¥ and .
¢ = min min J, . (2.43)
JEJ 1€XNJ -
Suppose 6, —0 and "
o :\
E 9f < . (2'44) 9
k=1 K
Under these conditions, if P{{,€J i.0.} = 1 then P{{,€J a.a.} = 1. 8
Proof Let I = Y\J. Using (2.14) and the Markov property \
-
P{&§€J, §ia€1) < P{E,€T} max P{&c €116 =i} N
B 6, A
< max " S
- Jel i% k :-:
~
< BJI| 65 . w
'}-I
Hence e
00 20 c :
3> P{&€J, &€l} < ¥ BT 65 < o
k=1 k=1 -,
by (2.44). Hence by the ‘first”” Borel-Cantelli Lemma we must have
P{§.€], & ,,€1i0.} =0, and it follows that P{{,€Ja.a} =1 whenever r
P{{,€Jio}=1. O ..
o
2.3 Convergence of the Annealing Algorithm ®
In this Section we apply the results of 2.2 to obtain asymptotic properties '\
of the annealing algorithm. Throughout this Section (2.3) we use the notation 2
introduced in 2.1. X
o
2.3.1 Bounds on the Transition Probabilities of the Annealing Chain TN
In order to apply the results in 2.2 we need to obtain bounds on the d- "
step transition probabilities pisk'k*d) of the annealing chain {{,}. Toward this .;:::
end we make the following definitions. For every i,j€EY and d€X let Ay(i,j) be R
the subset of £9*! such that (i = loy..0lg = J) € Agliy)) if Tz
‘o
k. k+1) _ B
pi(n]n‘l > 0 v n = O»vd_l ’ .‘:J.
v
for any k€N (this definition is valid since {T,} is a positive sequence and so ::,.
pigk'k“) > 0 for all k whenever p,gk'k”) > 0 for some k). Hence A,(i,j) is just ’ p
\;_\
\.’;\
PN
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the set of possible d-step transitions from state i to state j for the annealing :
chain. An alternate characterization of Ay(i,j) is as follows: )
(i = igy...,iq = j) € A4(i,j) iff for every n = 0,...,d—1 either -~
‘f.: »

(1) q;,,., > 0or '5;
(i) iy, =i, and q(iy,#) > 0 for some PEY with U(P) > U(i,). ol

This characterization follows easily from (2.2). x
l.-l

For each d€N let s
N . . o

Ud(loh--'ld) = }_: max{()'U(ln-H) - U(ln)} ’ s

n=0 e
L)

for all iy,...,iy € £, and Ny
V,(i,j) = inf Uy(\), 2.45 S

d(bd) = inf Uy0) (2.45)

o

V(i,j) = inf Valinj) (2.46) *

for all i,jEL. Note that the infinum in (2.46) is obtained for d < [L] Also .
note that ',::-_
V(i,j) < VG, + V(#,5)  Vij0eET. (2.47) DRy
We shall call V4(i,j) the d-step transition energy from i to j, and V(i,j) the
transition energy from i to j. '::'
The following theorem gives upper and lower bounds on the d-step '.::‘
transition probabilities of the annealing chain in terms of the d-step s
transition energy. ..

Theorem 2.7 Let {T,} be monotone nonincreasing and d€X Then there

exists positive numbers A, B such that

Vd(i,j) Vd(lv.])
Tk

A exp VijeEL . (2.48)

P ° [N

< pi(}k'k+d) < Bexp
k+d-1

Proof We prove the lower bound in (2.48); the upper bound is similar. Let

q, if j#i —
re(inj) = plkket) (2.49) Ny

1

for all i,jEX, and G

b .;

L ', 'I"/V..‘.'.'
". . .-ﬂ "". ""'. "'ﬁn. »
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- - . d-l . .
rk('o’---"d) = [I rk(‘nvln+1) ' (2'50)
n=0
;(iov...yid) = u:f Fk(ioa...)id) ) (251)

for all i,..,iq€X. If M€Xd*! then since {T,} is nonincreasing {F,())} is
nondecreasing and so f(A\) = f,()\) obtains the infimum. Note that F(X\) > 0
for all eAy(1,j), LIEX.

Now from (2.2) and (2.49)-(2.51) we have that
Ug(»)

Tyid-1

pI ) > 5 F(N) exp
AEAL1L))
For each i,j€X if Vy(i,j) < oc let

Vv i,jEX . (2.52)

and set
AEN(i.j)
if V4(i,j) = oo set a;; = 1. Then from (2.52)
vd(ls.])

pigk,k+d) 2 A exp

v ijeEX

Ty+d-1

where A = min a;; > 0.0

iJeL
Remark We note that the proof of Theorem 2.7 is quite trivial, and we
would like to point out that our reason for presenting it in detail is for
comparison with the (more difficult) proof of the general! state analog
(Theorem 3.3) to come.

2.3.2 Convergence in Probability and Rate of Convergence for Two
Local Minima

We now apply the results of 2.2.1 to establish the convergence in
probability and rate of convergence for an annealing chain {£,} with an
energy function U(*) with two local minima. We shall consider the following
example in detail:
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(H) ={1,23)

Q

Ae A1 "“.iﬁ

U(1) < U(3) < U(2) R0
Q12; 215 923 932 > 0 3
q; =0 otherwise . "
The annealing chain corresponding to (H) is illustrated by the transition {:
diagram in Figure 2.1. Let -
a =U(2) — U(3), A
b =U(2) — UQ1), o
= U(3) h U(l) ’ ::.:
-.
& = q3°qz - o
Here is our theorem. :-:;
4
Theorem 2.8 Assume the conditions in (H). e
-:f
(a) Suppose Ty l0 and -
00 a "_'.r
S exp |— T |=. (2.53) e
k=1 Ty A
@
Then 3
lim P{§ =1} =1. =
k—oo X
(b) Suppose (more strongly) that T, |0 and there exists a sequence {¢,} .
with 0 < ¢, < 1 and €,—1 such that a
k ~y 1 :‘
S exp |- |-/ —x as k—oo, (2.54) -
Tox 6  Ta e
n-k'(k AN
®
sup [ 1 _ 1 < oo (2.55) oy
k \ T2k T2k‘fk “_'.F
Then ,~.
n
=1 = _ —_— Y
P{& =1} =1+ Ofexp T, as k—x . (2.56) :-.;::
&
N
i
.9
v
,
2
-"'-
.
o
3
NG,
T N YA N LT e T e T L S e P T AR e e T TR TR N e N A TR A e L S e T .'_.._:-’
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Proof Let i
M =&un» S = &osr > ::\
~f‘\
k=exp |~ —|, =exp |— . &
2k 2k+1 :‘n\
Then {n}, {¢} are Markov chains with 1-step transition matrices 23
{R(k'k“)} = {[rigk’k“)]} , {S(k'k“)} = {[sigk'k“)]}, respectively, which satisfy jz'.:
Aijfe’ < it < B, o
G o k) 8; 2
Ayt <y < By, o
. . w4
for appropriate o, Bij, Ajj, Byj, and it is clear that these constants may be s
AR
chosen such that ;’;'. :
oy
a = max{oy, o} < 0, )
RS
b= min{ﬁxz» 1313} >a, :'
Y=b—a, ::j'.?
o= A - 4
Henc. 2 are (almost) in a position to apply Theorem 2.3 to {7, } and {g}. - &
Suppose that T JO and (2.53) holds. Since {T,} is nonincreasing, the \
divergence of the series in (2.53) implies that - jI::
oo 00 _::\ ¢
S h=0c0, Nrg=00. >
k=1 k=1 I
Hence we may apply Theorem 2.3 (a) to {n.}, {¢} to get ':j'.::,.
k—o00 k—00 v
K/
lim P{&y,, =1} = lim P{g =1} =1, 3
k—o00 k— 00 e
and hence :‘:::-
A
lim P{§{ =1} =1 e
k—oc P
which proves (a). 0
Suppose that T, |0 and (2.54), (2.55) hold. Now (2.54), (2.55) are RS
equivalent to, respectively, "\-j:
)
o
3
)
e
AN NN A A e e e e e e e AT Sl S \’
B s N T S L et A T T
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k ~ )
3 6+ 5 log 6 — oo as k—oc, (2.57) :
ne=key »
£ <0 (2.58)
. su . .
r K Oy
I. "

Hence we may apply Theorem 2.3 (b) to {n,} to get

P{€ =1} =P{m =1} =1+0

exp [—- -TL]] as k—oc. (2.59)

i 9"

2k ;
We make the following ’
Claim .
s k fod p
\ S T+ 7 log 7, =00 as k—oo, (2.60) '
n=k®€y :
°
Tk'( .
sup = < oo, (2.61) 3
k Ty
¢ Suppose the Claim is true. Then we may apply Theorem 2.3 (b) to {g} :
to get ?
P{€pa1 =1} =P{a =1} =1+ O |exp | =2 as k—oo, (2.62) 2
T2k+1 .
and it would follow from (2.59) and (2.62) that P\
P{ =1} =1+ 0 |exp 2 ] as k—oo, -
Tk :.
which would prove (b). It remains to prove the Claim. A
o
Proof of Claim We first show that -
1 1 e
sup - <co. (2.63) .
: K | T Tk -
Now
-
1 1 1 1 1 1 -
- < - + - . .o
T2k+1 T2k T2(k+1) T2(k+1).(‘: T2(k+l)'6k T?k :'.
¢ In view of (2.55) it is enough to show 5
2
L

-.quxﬂ-- AN TN, " . . T T A e
.'.-f.-.-‘f,va :.f,- p e N AN e T T NN
3 D N N N P .r.r.r-r‘.f B o s e P i S AR A
\..' W, ‘_ - ,r‘v\ .r.r o .a-\«r\\ *._-r__..-_f.- ot -(..,,.,\ R S R N A A



1 1

Tz(k‘f'l)(k T2k

sup

< o0,
k

or since {T,} is nonincreasing,
2(k+1)¢ < 2k (k large) .

Suppose this last inequality is not satisfied. Then there exists a sequence {k,}
of positive integers with k toc and '

knﬁkn>kn—€kn>kn—1’

Hence

k
liminf | 3 62+ 2 log 6,

k—o0 )
n-k'ck
< lim |62 + 2L log Bk]
R—+00 " 6 °

which contradicts (2.57). Hence (2.63) must be true. Now using (2.63) we
obtain '

k k
sup | X o~ B m[<sup [9k.(k'—9k+1]<00’

n=k*ey n=k°¢;

1 1

Toxsr Tox

sup (log 6 — log 7)) = sup < o0,

_ 1
T2k+1 T2k

su < oo,
kp

and (2.60), (2.61) now follow from (2.57), (2.58). This completes the proof of
the Claim and hence the Theorem. O
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Corollary 2.2 Assume the conditions in (H). Let

c
T, =
k log k
where ¢ is a positive constant.
(a) If ¢ > a then

(k large)

lim P{§{, =1} =1.
k—sco

(b) If ¢ > a then

P{{ =1} =1+ 0O |exp|— 717— as k—o0. (2.64) )
x
(¢) If ¢ = a then '
( 4 {
1+0 exp—-j— if v<79
k T
P{Ek=1}=‘1+OLeXP—T +loglogk]] if v=3
k
) . )
1+ Olexp|— — if v>90, as k—oc, :
L Ty ;
(2.85) :
where 3 = §/2.
[
Proof We may use Corollary 2.1 by appropriately identifying variables. Let A
M =&k & = Eorr1 >
and 3
1 ®
9k = kl/c . \
Then {7}, {¢} are Markov chains with one step transition matrices N
{R(k'k“)} = {[rigk'k“)]}, {S(k'k“)} = {[sigk'k“)]}, respectively, which satisfy Y
Ajj 67 < rflkrd), slektl) < g 6" (k large) )
for appropriate o, f8;j, Aj, Bjj, and these constants may be chosen such that &
L4
'
)
F
i
L2
a
>
®
N AT R ST R S AT A e e T e e e T e et \;.?'_:.‘_-.‘_'-‘_-.\.\‘_--_::.
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b

a = max{0y;,03;} < 00, -

. b= min{ﬂm,,@m} >a ,

Yy=b-—a, ::.
Hence we may apply Corollary 2.1 (a)(c) to {m}, {G} to get the i
corresponding (a)-(c) here. O -
Remarks on Theorem 2.8 and Corollary 2.2 fji
(1) Theorem 2.8 (a) is a simple case of Theorem 2.2 (Hajek's Theorem) L
since a = A(2) = A’, the optimal constant (see (2.10)). D
(2) We compare our results with the rate of convergence (2.9) given by N
Mitra et. al. First, Theorem 2.8 (b) gives the rate of convergence of -
P{&'k = 1} to 1 for nonparametric temperature schedules, in particular ._
schedules not of the form Ty = ¢/log k. This is possible essentially due to the o _
application of the Abel-Dini Theorem on infinite series in the proof of Lemma 3
2.1. (2.9) is valid only for temperature schedules of the form T, = c/log k. :_\‘,
Second, Corollary 2.2 (b), (¢) gives the rate of convergence for temperature -:"
schedules of the form T, = c/log k for ¢ > a, whereas (2.9) only holds for 3

¢ > rL =2{U(2) — U(1)] > U(2) — U(3) = a. Furthermore, for ¢ > r L where ]
(2.9) does hold, (2.64) is in general tighter: o~

a2

o R R U - R
exp | — = < - . ~
Ty ] 1" kmin{e, 5} E::
Recall that Mitra et. al. suggest choosing ¢ > r L such that min{a,l} is _-.
maximized (see (2.9)). Our results suggest choosing o
a if <39 e
cC = . .-\
a+e if ~4>7 S
L J
where 0 < € < a [(7/0) — 1] (see (2.64) and (2.65)). We want to stress that f:‘j
(2.9) holds for general U(*) whereas we have not been able to extend Theorem
2.8 and Corollary 2.2 to a U(*) with more than two local minma. A
(3) The proof of Theorem 2.8 and Corollary 2.2 {which rely on Theorem
2.3 and Corollary 2.1) show that there are two factors which limit the rate at ._
which P{Ek = 1} converges to 1. One factor corresponds to the rate at which .
the annealing chain makes transitions from state 1 to state 3 and back. For -
temperature schedules of the form Ty = c/log k this factor dominates for \:
¢ > a and has a characteristic time scale 1/v. Note that ~ = U(3) — U(1) °
N
-\-
]
)
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depends only on the energy function U(*). The other factor corresponds to the .':;_‘
rate at which the annealing chain makes it first transition from state 3 to ~h
state 1. For temperature schedules of the form T, = c/log k this factor is ;"-\.
only important for ¢ =a and has characteristic time scale 1/5. Note that '::
3 = q3,q5;/2 does not depend on the energy function U(*). We wonder i:"
whether there is some physical significance to all of this. ""
2.3.3 Sample Path Analysis e
We now apply the results of 2.2.2 to analyze the sample path behavior of P‘,'
the annealing chain {§,}. To avoid trivialities we will need the following o
assumptions: - Py
(P1) Every i€X\S can reach some j€S n
(P2) There exists an i€L\S such that for every j€S, i can only reach j ,’-\
at height greater than U(i). o
A
The following theorem gives conditions under which the annealing chain B
{&,} visits S infinitely often with probability one. Let :.::
f’
V* = max min V(i,j) (2.66) pn
iEC\S j€S D
‘o
Note that (P1) holds if V' < oo. 2
Theorem 2.9 Assume (P1). Let {T,} be monotone nonincreasing and
% v i
3 exp|— ——[=o00. (2.67) -
k=1 Tk e
Then P{£,€S i.0.} = 1. 2
Proof We first show there exists a d€Nsuch that F"
. o
V = max min Vg(i,j) . 2.68 0y
iEns jes d( J) ( ) f;”'
For every i€L\S there exists a d;€N¥such that ;-;
' )
min Vy(i,j) = min V(i,j) <V . w4y
ies d.( J) ies ( ’J) = :r.
. K
Let d = max d;. Now it is easy to see that for every i€X -
i€\S L
in V,(i,j) < min V_(i,j >m. :.-
Ijrélsn o) < rjrgsn m(le) Von>m . ‘:::
"
Hence for every i€X\S '-:::'_
oy
o
G
>
N
~
K)
e e T L el e S e T T e T e e e
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min_min V,(i,j) < V'

min V «i,]
jes d'( 1J) < d” j€S

and (2.68) follows by setting d = d’.

Next, from Theorem 2.7 there exists a positive number A such that

Valisj
p{itd) > A exp |- Yalbd) | €T .
k+d-1
Let
= 1
€x = &xar O =exp ’—I‘—] )
kd+d--1
and
of1,j) = V4(i,j) VijeX . (2.69)
Then {&,} is a Markov chain with 1-step transition matrices
{plek+1)y = {[f)igk'k“)]} which satisfy
Bl > A6 vijes.

Let

a = max mm aj
i€EE\S jes

By (2.68) and (2.69) a = V'. Hence since {T\} is nonincreasing the divergence
of the series in (2.67) implies

o0

> 6 =

kw1
Hence we may apply Theorem 2.4 to {E L} with J =S to get P{Z k€S io.} =1
and so P{{ €S i0.} =1. O

Remark Clearly V' > A’, the optimal constant (see (2.10), (2.66)). Hence
(assuming strong irreducibility and weak reversibility) Theorem 2.2 is a much
stronger result. However, the importance of Theorem 2.9 is that it can be
extended to a general state version of the annealing algorithm under
essentially the condition that the state space be a compact metric space and
the energy function be continuous. This will be done in Chapter 3.

The next theorem gives conditions under which the annealing chain {§}
visits S with probability strictly less than one. Let
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V, = max min min V{(i,j) .
KOS ief\K jes

Note that (P2) and (2.47) imply V, > 0.
Theorem 2.10 Assume (P2). Let Ty—0 and
A\

k

o

Y] exp

k=1
Then there exists an i€X such that

< 00.

P; kL—Jl {EkES} <1.

Proof From Theorem 2.7 there exists a positive number B such that

p{¥*1) < B exp [— X%*‘l] Vv ijes .
k

Theorem 2.5 may be applied to {{,} in an obvious manner. O

Finally, we give a theorem which gives conditions such that the
annealing chain {§;} converges to S with probability one, provided it visits S
infinitely often with probability one. Let

V., = mi in V(j,i) . 2.71
2 = min min, (3,1) (2.71)

Theorem 2.11 Let Ty—0 and
\

k

3 exp < o0.

k=1
If P{{,€S i.0.} =1 then P{{,€S a.a.} = 1.

Proof From Theorem 2.7 there exite a positive number B such that

. e v‘
T, Y i,jEX .

Theorem 2.6 may be applied to {£,} in an obvious manner. O

Remark Theorem 2.2 or 2.9 may be combined with Theorem 2.11 to give
conditions under which the annealing chain {&} converges to S with
probability one. Note, however, that is is not always possible to do this since
it is not in general true that V, >V’ or even V, > A’ (see (2.10), (2.66),
(2.71)).
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2.4 Annealing Algorithm with Noisy Energy Measurements

In this Section we consider a modification of the annealing algorithm so
as to allow for noisy measurements of the energy differences which are used in
selecting successive states. This is important when the energy differences
cannot be computed exactly or when it is simply too costly to do so. Using
the notation introduced in 2.1 we construct the modified annealing chain as
follows. At time k, given the current state is i we select a candidate state j

o & %
“.")'l'l 10,
s,

B, o 2

[} ' 91
N »

with probability q;;. We assume that the energy difference U(j) — U(i) is ::
N 4

measured with (additive) noise, which is independent of states and candidate T_;
states at times less than or equal to k, and noise at times less than k. The ’\;
exponent of the energy difference plus noise is then used to determine whether @
a transition is made from i to j. More precisely, let {wk} be a sequence of R- ::
valued independent random variables. Construct a 3-valued discrete-time ::::
process {£,} with £, ., conditionally independent of £,,...,§}_; and wy,...,wy_, '\\3
- AN’

given £y and wy, and ¢
.".N

Pl =il =i we =w}
N

s

UG —U) +w . . . ., o

qijexp[— /() T() ] if UG)—U@)+w>0, j#i, ®

= k “

4 if UG) — U +w <0, j#i, =

for all i,j€EX. It is easy to see that {£,} is a Markov chain. Let e
~ > ®
(plki+1)y — {[f)igk’k“)]} be the 1-step transition matrices for {£,}. Then since S
. / o
w) is independent of £, we have ey
- - : L

A (kk+1 . . AT
pig'+)=E{P{€k+l=J|€ka wi €y = i} °

- - AN

= E{P{{is1 =il =1 w}} N

U(j) = U@{) +w -

= f q;; exp | — (i) TL) dF,(w) i~

{w>U(i)-U()) k ~

L J

+q; P{w, <UG) -~ UG}  Vj#i, (2.72) RN

NG

.::,'-

where F (*) is the distribution function for w,. We shall call {§,} the "..
annealing chain modified for noisy energy measurements. In the sequel we C:_'.\-
\.‘\-
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shall only consider the case where w, is Gaussian with mean 0 and variance 4 .

of > 0. Hence (2.72) can be written as =

< U(j) — UG) + w
f).lg"»k“) = f q;; exp [— J T dN(0,02) (w)
U(i) - U} k
+ q; N(0,6¢) (=00, U(i) —U(G)]  Vj#i. (2.73)

The following theorem shown that if the noise variance goes to zero fast \
enough then the 1-step transition probabilities for the annealing chain ;.
modified for (Gaussian additive) noisy measurements are asymptotically @
equivalent to the l-step transition probabilities for the unmodified annealing .-
chain. NG
Theorem 2.12 If ::;‘.

o =o(T}) as k—oc '
then ;j:::
U(j) — U(i) T . R
A (kk+1) i &P | T if U(j) > U(i)
Pij ~ k
. . N e s 2.74 N
a it UG) < UG, 5 <0, 379 ,:;.
as k—oo, for all i,jEX. -::.~
Proof Fix i,j€X with j # i and q;; > 0. Let
- UG) — UG) + w :
a, = qjj exp | — T dN(O,akz) (w) :j-'
U(i) - u(j) k "
by = q;; N(0,0¢) (—o0, U(i) — U(j)] o
Y
so that (2.73) becomes N
piEtt) =a, + b, . (2.75) Ry
Clearly, =
lim a =0 if U(H) <U(i), (2.76) =
— 00 .U
o

-
S
-
)
v
-t




lim b, = (2.77)
—_— q..
i 5 it UG) = UG)
We make the following
Claim
ay ~ q;; exp [— H(‘Q,;—kg—(i if U@G) > U(i) and of == o(T}) (2.78)
3y — 3'2'—‘ if UG) = U(i) and of = ofT}) (2.79)
by mo [exp - I—J*(JJTIT—Uil)- if UG) > U@) and of = o(Ty) (2.80)
k

Suppose the Claim is true. Then combining (2.75)-(2.80) gives (2.74) if
o = o(T}}), as required. It remains to prove the Claim.

Proof of Claim We have

o0 U Y — U .
ax= [ gjexp ["’ ) T (+> ] dN(0,0¢) (w)
U(i) - U() k
= g exp [— Y=t e~ AN(0,02/T2) (w)  (2.81)
k T\JU(i) - UG)l

after a change of variable. Choose W < 0 and let

e ™ if w>W
f(w) = eV if w<W.

Then for sufficiently large k

e™ dN(0,0¢/T{) (w)
TU(i) - UG)
o0 T(Ui) - UG))
= [ f(w) dN(0,0f/T]) (w) = [  f(w) dN(0,0{/Ty) (w) (2.82)

We analyze these last two integrels as follows. First, if of = o(T]) then

...................................
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o
N(0,02/T?) (*) converges weakly to the unit measure concentrated at the '
.}
origin, and since f(*) is a bounded and continuous function on R .
R
oo B
kli_noxo _f f(w) dN(0,0¢ /T2) (w) = 1(0) =1 . (2.83) EE'- :
I.'*
Next, if U(j) > U(i) and of = o(T{) then A
Ty[U(i) - V()] '
[ fw) dN(0,0¢/T¢) (w) -
< e N(0,05/Ti) (—o0, Ti[UG) — U())]
— . . .
= eV N(0,1) ((TZ/) * [UG) = U(i)], o) 2
o T2
<eVexp |- [U(j) = U(i)” o
2(oi /Ty) Ny
—0 as k — o0, (2.84) "’
o
ol
where we have used N(0,1) (x,00) < exp(—x?/2) for x > 0. Combining (2.81)- 1':'.:;-_
(2.84) gives (2.78). (2.79) may be proved similarly by taking W = 0 above. o
As for (2.80), if U(j) > U(i) and of = o(T}) then
by = N(0,) (o0, U(i) — U(j) o
N
= N(0,1) ((1/3) - [U() — U(i],o0) i
. . ®
S exp | — [U(Jl—zlj(l)l‘ oo
N T .
=0 [exp [— Ui = u(i) as k—o0, AN
Tk ".
753
again using N(0,1) (x,00) < exp(— x*/2) for x > 0. This completes the proof ;.t
of the Claim and hence the Theorem. O ;::
V
~
The asymptotic behavior of the annealing chain modified for (Gaussian N
additive) noisy measurements follows immediately: ”
25
7
. @
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Corollary 2.3 If

af = o(T}) as k—o0
then Theorems 2.1, 2.2, 2.7-2.11 hold with {&.} by {£,}-
Remarks

(1) The Corollary is more or less obvious, since the convergence in (2.74)
is uniform for i,j€X (since ¥ is finite); we leave the details to the reader.

(2) We have reason to believe that of = o(T}}) is quite conservative and
that of = o(T?) may suffice.
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CHAPTER I %
GENERAL STATE ANNEALING TYPE ALGORITHMS ~
."_.
3.1 Introduction to the General State Annealing Algorithm '.‘,';
In Chapter 2 we discussed the annealing algorithm as introduced by ¥4
Kirkpatrick [19] and Cerny (3] for combinatorial optimization. In this Section \
we extend the annealing algorithm for optimization on general spaces. The ey
general state annealing algorithm will consist of simulating a nonstationary o
Markov chain whose state space is the domain of the cost function (called )
energy) to be minimized. This Markov chain will be a general state space ‘o
analog of the finite state annealing chain described in Chapter 2. As far as N
.
we know, no one has given a careful formulation of such an algorithm and j'.:
proved a convergence result. Indeed, there even seems to be some question f-‘\-
regarding conditions under which the Metropolis algorithm, i.e., the annealing oy
algorithm at a fixed temperature, may be used for sampling from a continuous a.'.
Gibbs distribution (c.f. [16]). Geman and independently Grenander (13] have =
suggested using diffusions for optimization on multi-dimensional Euclidean :::
space. This approach and its relationship to the general state annealing R
'~
algorithm is described in Chapter 4. *‘.
We first give some standard general state space Markov chain notation ::}_
(c.f. [6], [27]). Let X be an arbitrary set and let B be o-field of subsets of L. -
P(*,") is a stochastic transition function on (,B) if j',:}
+ for every AEB P(‘,A) is B-measurable “:'.
* for every x€X P(x,*) is a probability measure on (3,B). o
{Py(*,*)} are the 1-step tramsition functions for a Markov chain {{,} with L
state space X if for every k€N P,(*,*) is a stochastic transition function on o
(3,B) and N
P{{n€Al6) = Pu(wA)  wp. 1 (3.1) |
for all AEB. Conversely given a sequence {P,(*,*)} of stochastic transition
functions on (¥,B) we can construct or a suitable probability space ({1,F,P) a
Markov chain {£,} with state space £ which satisfies (3.1). For each d€X let
L
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3
PEEA) = [ Pu(xdx;) [ Pyya_g(Xa-2:8%4_1) Pryas(Xa_p,A) -
for all x€¥ and A€B. P&X**d)(..) is a stochastic transition function on (X,B) 3
and A
N

P{€ra€Ale) = PEIH(g,A) w.p. 1 2

for all A€EB. It will be convenient to have a fixed version of the conditional .
probability of & .4 given £ which we define by N
P{&ura€AlE = x} = PIok+d)(x A) 3

for all x€X and AEB. Ny
o
It is characteristic of the theory of Markov chains with general state Y,

space that there exists an auxiliary o-finite measure usually denoted by ¢(),
i.e., the state space is a o-finite measure space (X,B,¢). We shall adopt this
framework. We now define the general state annealing algorithm. Let U(") o

<,

be a nonnegative B-measurable function on ¥, which we shall call the energy ’
function. The goal is to find a point in ¥ which minimizes or nearly :::
minimizes U(*). Let {Ty} be a sequence of positive numbers, which we shall N
call the temperature schedule. Let q(*,") be a nonnegative BxB-measurable "
function on £xX such that ’.
Jaxy) ddy)=1 Vvxez. o

~Y

Now let {£,} be the Markov chain with state space L and 1-step transition :
functions {Py(*,")} given by .
Pi(x,A) = [ a(x,y) si(x,y) $(dy) + n(x) §(x,A) (3.2) -3

A NN

BN

for all x€X and AEB, where NN
N

exp |~ M if U(y) > U(x) K

sp(x,y) = Ty 33

1 if U(y) <U(x) , T_:_ﬂl

s

)

L9

N(x) =1 = [ q(x,y) si(x,y) #(dy) ,

‘e

and §(x,’) is the unit measure concentrated at x, for all x,y€¥ (note that o
)
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Fubini's Theorem guarantees that P (*,") defined by (3.2) is a valid stochastic
transition function). We shall denote by p,(x,) the density of the ¢-
absolutely continuous component of P,(x,*) and by plt ‘k*d)(x,‘) the density of
the ¢-absolutely continuous component of P(k'“d)(x,'). Note that if X is finite
and ¢(°) is counting measure then {,} is just the finite state annealing chain
of Chapter 2 with gq; = q(i,j) (see (2.1)). Hence we sha!l also call {{} the
annealing chain, and the algorithm which simulates the sample paths of {£,}
with Ty,—0 the annealing algorithm.

The motivation behind the general state annealing algorithm is similar to
the finite state case as described in Chapter 2. Let

Q(x,A) = [ q(x,y) ¢(dy)
A

for all x€X and A€EB. Q(‘,") is a stochastic transition fuaction on (£,B). For
each d€lNlet

QYW(x,A) = [ Q(x,dx;) " [ Q(xa_pdx4_y) Qlx4_1,A)

for all x€X and A€B. The following definitions generalize the familiar finite
state definitions. We shall say that Q(*,*) is trreducible if for every x€X and
A€B with #(A) > 0 there exists d€I¥ such that Q(d)(x,A) > 0. We shall say
that Q(*,*) is symmetric if q(x,y) = q(y,x) for all x,y€X. Suppose Q(,*) is
irreducible and symmetric, and let {{7} be the stationary chain with I-step
(stationary) transition function PT(-) given by the r.h.s. of (3.2) with
T, = T, a positive constant. Suppose that 0 < ¢(3) < oc. Then it can be
shown that PT(*,) has an invariant Gibbs measure IIT(), i.e.,

= [ I™(dx) PT(x,A) V A€B,
vhere

[ exp[— U(x)/T]¢(dx)

nTa) =2 B.
Y Lt R

This follows from the detailed reversibility

T (x)pT(x,y) = 7 ()P (y,x) ,
valid for ¢xd-a.e. x, YEL, where 77(*) and pT(x,') are the densities of the ¢-
absolutely continuous components of nT(°) and PT(x,'), respectively.
Furthermore, Q(',) irreducible and symmetric implies that {¢T} is an
irreduciblet (and aperiodic) chain and if a certain condition of Doeblin [6, p.

tA stationary chain is irreducible if its 1-step (stationary) transition function is
irreducible.
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192) is satisfied, then by a version of the Markov Convergence Theorem [6, p.
199)

Jim P{¢feA} =TIT(A) Vv AeB. (3.3)
—00
Let S be the set of global minima of U(*), i.e.,

S={x€X: Uix)<Uly) VyeZ}

(assume S # (J for the moment). Now for small T we expect IIT(*) to be
concentrated near S. Like the finite state case, the idea behind the general
state annealing algorithm is that by choosing T = T, —0 slowly enough the
probability measure of &, actually becomes concentrated near S.

Unlike the finite state case there are some technical problems in just
verifying (3.3). We need to check Doeblin’s condition and we also need a
practical criterion to check whether Q(*,*) is irreducible. These issues are
investigated in 3.2. We will not use (3.3) in our analysis of the annealing
algorithm with time-dependent temperature schedule. However (3.3) is of
independent interest as it constitutes the theoretical justification of a
continuous state version of the Metropolis algorithm which may be used for
sampling from a continuous Gibbs distribution (c.f. [16]).

In 3.3, 3.4 we shall extend our result (Theorem 2.9) on the finite state
annealing chain visiting S with probability one to the general state case,
under essentially the condition that the state space ¥ be a compact metric
space and the energy function U(*) be continuous.

3.2. Ergodicity of the General State Annealing Chain at a Fixed
Temperature

In this Section we shall discuss the ergodicity of the general state
annealing chain at a fixed temperature. We shall use the notation of 3.1
except that we will fix a temperature schedule Ty = T, a positive constant,
and suppress the dependence of the various quantities on T and also on the
time index k whenever possible. In this notation we shall give conditions
under which

lim P{E€A} =TI(A) v A€B. (3.4)

We have already remarked in 3.1 that (3.4) will hold if Q(*,") is irreducible
and symmetric and a certain condition due to Doeblin is satisfied. Doeblin's
condition will be satisfied if
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(D) 0 < #%) < oo and there exists ¢ > 0 such that P(x,A) <1 —¢
for all x€X and AEB with #(A) < €.

Under suitable conditions on X, ¢(*), U(*), and q(*,") we shall verify (D) and
give a convenient characterization of the irreducibility of Q(*,*). These same
conditions will be used in 3.4 to analyze the general state annealing chain
with time-dependent temperature schedule. We shall also give an example of
a class of q(*,”) which satisfy the stated conditions.

Consider the following set of conditions:
(A1) (X,p) is a compact metric space

(A2) (X,B,9) is a nontrivial finite measure space with B the Borel
subsets of ¥

(A3) ¢() is positive on open subsets of &

(A4) U(*) is continuous

(A5) q(*,*) is bounded

(A8) g(*,*) is continuous on {(x,y)EExXL : q(x,y) > 0}

(A7) ¢({*}) is lower semicontinuous on {x€X : gq(x,x) > 0}

We remark that not all of these conditions will be used to obtain every
result.

The following proposition deals with Condition (D).

Proposition 3.1 Assume that (Al), (A2), (A4), (A5) hold. Then there exists
€ > 0 such that P(x,A) < 1 — ¢ for all x€X¥ and AEB with ¢(A) < e.

Proof Using (3.2) and (AS5) there exists a constant ¢, such that
P(x,A) < ¢;4(A) + {x) Vx€X, VY AEB . (3.4)
Now

Ax) =1 — [ a(x,y) s(x,y) ¢(dy)

<1 - [ q(xy)exp [— 1ot) ,; U] #(dy)
<1 —cy [ a(xy) ¢(dy)
=1—c vV x€L, (3.5)
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for some constant ¢; > 0, since (Al) and (A4) imply that U(*) is bounded.
The Proposition now follows from (3.4) and (3.5). O

We next develop a criterion for the irreducibility of Q(*,’) motivated by
the finite state case. We shall say that given states x and y, x can reach y if
there exists a sequence of states x = xy, ..., X, =y such that q(x;, x;,;) >0
for all n = 0,...,p—1. Suppose that X is finite, ¢(*) is counting measure, and
q;; = q(i,j)- Then this definition reduces to that given in Chapter 2. Now the
stochastic transition matrix Q = [q;;] is irreducible iff i can reach j for all
i,j€X. The following Theorem gives a similar criterion for the stochastic
transition function Q(x,A) = f q(x,y) #(dy).

A

Theorem 3.1 Assume that (A1)-(A3), (A6) hold. Then Q(:,*) is irreducible
iff x can reach y for all x€X. and $-a.e. yEX.

Proof Suppose that Q(*,*) is irreducible and there exists x€¥ and AEB with
¢(A) > 0 such that x cannot reach y for all yEA. Then there exists a dEN
such that Q(d)(x,A) > 0, and by Fubini’s Theorem

QU(x,A) = [ Q(x,dx,) ** [ Qxg_pdx4-y) Qxa_1,A)

= f a(x,x;) #(dx,) - f q(Xq-2:%a-1) H(dxq_y) { q(xg-1:xg) H(dxq)

= [ abxxy) * e qlxgonxa) ¢(dxyedx)
3Lt T\

>0. (3.6)

Hence, q(x,x,),...,a(X4-1,Xq) > 0 for some xj,...,x4_;EX and x4€A, and so x can
reach some y€A, a contradiction.

Conversely, suppose that x can reach y for all x€X and ¢-a.e. yEX. We
first show that given € > 0 there exists a compact CCX with ¢(C) > (L) — ¢
such that x can reach y for all x€X and y€C. Let BEB such that
#(B) = HX) and x can reach y for all x€L and y€B. Recall that a Borel
measure 4 is regular if given d > 0 and a Borel set F there exists a compact
set K and an open set G such that KCFCG and p(G) — u(K) < 6. It is
known that finite Borel measures on compact metric spaces are regular (c.f.
[28, Ch. 14] for a discussion of these matters). Hence by (A1), (A2) ¢(*) is a
regular Borel measure and so there exists a compact CCB such that
&(C) > ¢(B) — € > ¢(X) — € and necessarily x can reach y for all x€X and
y€eC.
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We next show that there exists a d;€N such that x can reach y in not
greater than d, steps for all x€X and y€C. By (AS6) if x can reach y in d(x,y)
steps then there exists neighborhoods U; of x and V, of y such that u can
reach v in d(x,y) steps for all u€U, and vEV,. Now {U,x(V;NC): x€Z, yeC}
is an open cover of compact £xC (in the relative topology) and so there exists
X15...XN € X and y,,...,yn € C such that

N
ExC C U Uy xV, .
n=1

Let

dy = max d(xu¥a) -

Now fix x€X and AEB such that ¢(A) > 0. Ultimately we want to show
that there exists dEN such that QW(x,A)>0. If @A) =) then
Q¥(x,A) =1 for all dEN So assume that 0 < ¢(A) < #(X). The next step is
to show that there exists d,€Nand DEB with DCA and ¢(D) > 0 such that x
can reach y in d; steps for all yED. Choose 0 < ¢ < HL) — #(A) in the
definition of C above. Then ¢{CMNA) > HX) — HA) — € > 0 and x can reach
y in not greater than d, steps for all yeCMA. Forn = 1,.,,4d, let

. = {YECMA : x can reach y in n-steps}

Then C,€B for n = 1,,..,d; and
d,
UC,=CMhA.
n=1

Hence since $(CMA) > 0 we may choose dy€{1,...,d,} such that ¢(Cy) > 0.

Let D = Cg,.
Let d = d,. By one additional application of Fubini's Theorem to (3.6)
Q9(x,A) > Q¥(x,D) = [ f(y) #(dy) (3.7)
D
where

f(y) = [ a(xx) * = * alxgopy) ¢4 o dxgy) -

Since f(*) is a B-measurable function on £ and ¢(D) > 0, if we can show that
f(*) is positive on D then by (3.7) Q¥(x,A) > 0 and we are done. We now
show that f() is indeed positive on D. Fix y€D and let
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I e
slale e

a(xly---’xd—l) = q(xrxl) ¢ oo q%Xg-p,Y) Y Xpy..0Xq-1€EX .

Then : \
« d-1 By

f(y) = f q(xl)...vxd-l) ¢ (dxl e dxd-—l) 4 :::

Since x can reach y in d steps there exists x,,..,x3_;€EX such that :
d(xqy...0Xg_1) > 0. Using (A6) there exists neighborhoods B, of x,,
n = 1,...,d—1, such that §(*) is positive on Byx *** xBy_,. Since §(*) is a B4~!- s
measurable function on a4t and ¢} (B, x *** xBy_,) g
= ¢(B,) * *** * #By_;) > 0 by (A3), we have that f(y) > 0, and since y€D was o
chosen arbitrarily, we have f(*) is positive on D as required. O [
We end this Section by giving an example of a class of q(*,*) which have :*‘
the property that the corresponding annealing chain makes ‘““small’’ moves in :j
a topological sense. This is consistent with the approach taken in the finite ;,
state case as discussed in Chapter 1. Of course if ¥ is a metric space than :
the notion of smallness is well-defined. We construct a function q{*,*) as o
follows. Assume that (Al1)-(A3) hold, and let p(*,’) and R(*) be positive -f.j
continuous functions on £xX and ¥, respectively. Let "
q(x,y) = ¢(x) p(x,y) XB(x,R(x})(y) Y x,yEL, (3.8) .

e

where 5
1 -

c(x) = [ [ ey ¢(dy)I v xex. Z

B(x,R(x)) “*
o

Note that if oy
[ p(x,y) #(dy) =1 Vv xe¥l, -_;::
and £ is a random variable which density p(x,*) with respect to ¢(*), then ,;_
q(x,*) is a density for the conditional distribution of £ given £EB(x,R(x)). The K
following proposition establishes that g(*,*) satisfies (AS5), (A6). ’f_
Proposition 3.2 Suppose that
H{y€Z : p(x,y) =R(x)}) =0 Vv x€X . (3.9) )
o

Then q(*,*) is bounded and continuous on {(x,y)EXxX : q(x,y) > 0}. o
X

=N
N
R
. ]
o
-~
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Proof Let
f(x,y) = p(x,y) Xpara)(¥Y) YV xy€EL,
so that
a(x,y) = c(x) f(x,y) ¥V xy€L,
and

o) = (] 1oy slan)|" wxex.

Using the continuity of p(*,’) R(*), and p(*,") we have that {(*,*) is a continuous
function on {(x,y)EEXZ : p(x,y) # R(x)} and hence on
{(x,y)EEXE : q[x,y) > 0}. We now show that ¢(*) is a continuous function on
Y. Let x€X and {x,} be a sequence in ¥ such that x;—x. Then
f(xg,¥)—f(x,y) for all y€X such that p(x,y)# R(x). Hence by (3.9)
f(x,,y)—f(x,y) for ¢-a.e. y€X, and by the Dominated Convergence Theorem
¢(x;)—ec(x). Since x and {x,} were arbitrary, c¢(*) is continuous. The
Proposition follows. O

Remark If ¥ is a subset of KR, ¢(*) is Lebesgue measure and
p(x,y) = ly — x| then (3.9) is of course satisfied.

3.3 Asymptotic Analysis of a Class of Nonstationary Markov Chains

In this Section we analyze certain asymptotic properties of a class of
nonstationary Markov chains. These chains have the property that their 1-
step transition probabilities satisfy bounds similar to those satisfied by the d-
step transition probabilities of the annealing chain. The results of this
Section will be used in 3.4 to deduce corresponding asymptotic properties of
the annealing chain.

We shall consider the following class of Markov chains. Let (X,0) be a
compact metric space and (X,B,$) a finite measure space with B the Borel
subsets of £ and ¢(*) positive on the open subsets of £. Let of*,*) be a [0,00]-
valued upper semicontinuous function on IxY¥ and {6} a sequence of real
numbers with 0 < 6, < 1. Let {£} be a Markov chain with state space &
and 1-step transition functions {P,(*,’)} whose ¢-absolutely continuous
components have densities {p,(*,")} with the following property: for every
u,vEL there exists a neighborhood B, , of (u,v) in XxX and a positive number
K(u,v) such that
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pe(x,y) > K(u,v) (e V (x,y)EB,y - (3.10) *
Note that we do not assume there exist a positive number A such that i&
¢
P(xy) > A ef(x,y) Y x,yEL , (3.11) :?;:'
which is similar to (2.13). Of course if ¥ is finite and ¢(*) is counting :f- ]
measure, then we do obtain (3.11). ‘
The following theorem gives sufficient conditions under which {£;} visits ";
an open subset of ¥ infinitely often with probability one. t’?
o~
Theorem 3.2 Let Y be an open subset of ¥ and 2:{
a = sup inf ofx,y) < co. .9
x€L\Y yeY () 9
)
Suppose there exists ¢ > 0 such that :;
LY
o o
Y 6T =00, (3.12) X
k=1 '@
-
. -~
Then P{§{€Y 0.} = 1. :::
Remark If ¥ is finite and ¢(*) is counting measure we obtain Theorem 2.4 ;:-:'
modulo the factor of € in (3.12) as compared with (2.40). However Theorem '-E‘;
3.2 cannot be proved by the simple argument used to prove Theorem 2.4, .o
essentially because we assume cnly (3.10) and not (3.11). f:’_::
"y
We will need the following two lemmas for the proof of Theorem 3.2. v
Lemma 3.1 Let ¢ > 0. Then there exists a nonnegative lower ;
semicontinuous function L(*,’) on XxX with L(x,y) > 0 whenever afx,y) < c o
and ;'_::
Pu(xy) 2 L(xy) 6 VY x,y€EX. )
Proof Let U= {(u,v)€ExE: ofu,v) < ¢} which is an open subset of Ex¥ ; _.
- ™
since af*,') is upper semicontinuous on £x¥. Now by (3.10) s
Tt
P(xy) 2 K(u,v) 6, V(x,y)EB, 5 VY(u,v)EV . X
;m :
Let °
K (x,y) = su K x,y)EU . i
(%) (u,v)EpU: (u,v) v (x,y)€E .L-.,_-
Bu.va(xv}') t:."
It follows that \':',:
e
N
)
2
'.‘:x y
\.‘__*:
®
e
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Pe(xy) 2 Ki(xy) 6V (xy)€U, (3.13)
and
(u,igegu K,(u,v) > K(x,y) >0 v (x,y)€EU . (3.14)
Let Ky(*,*) be the lower envelope of K,(*,*), i.e.,
K,(x,y) = sup inf K, (u,v) Y x,y€U .

>0 0<p(u,x)+o(v,y)<b
Then (c.f. [1]) K,(*,) is a lower semicontinuous function on U and

K,(x,y) < K (x,y) for all (x,y)€EU. Also (3.14) imglies that K,(*,*) is positive.
Let

Kz(x,y) if (X,y)@
Lixy) = ], if (x,y)¢U,

for all x,y€%. Since U is open and K,(*,") is a positive lower semicontinuous
function on U, L(*,’) is a lower semicontinuous function on Xx3 which is
positive on U. Furthermore

K, (x,y) > Ky(x,y) = L(x,y) Y (x,y)EU . (3.15)
The Lemma now follows from (3.13) and (3.15). O
Lemma 3.2 Let Y be an open subset of ¥ and

= sup inf ofx,y).
. xGEquelY (x.y)

Let € > 0 and L(*,") be a lower semicontinuous function on ExX such that

L(x,y) > 0 whenever ox,y) < a + ¢. Then there exists open sets W,,.. , Wy
contained in Y such that

su min sup a(x,y)<a-+e€,
x€E\Y m=1,.M yeW,

inf max inf L(x,y)>0.
x€L\Y m=1,.M yeEW,

Proof Let X =2X\Y. We first show there exists a relatively open cover
Uj,...,Un of X and open sets V,...,Vy contained in Y such that a(x,y) <a + ¢
for all x€U,, y€V,, and n =1,..,,N. For every x€X there exists a y€Y such
that o(x,y) <a + ¢ and since of,’) is upper semicontinuous there exists
neighborhoods A, of x and B, of y such that a(u,v) < a + € for all u€A, and
vEB,. Since {A,MX: x€X} is an open cover of compact X (in the relative
topology), there exists xy,...,xyEX such that
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n=l
Let U, = A,nﬂx and V, = anﬁY forn =1,..,N.

We next show there exists a § > 0 such that for every x€X there exists a
YEY and an n€{1,..,N} such that x€U,, yEV,, and L(x,y) > 6. Let

= sup L(x,y) VxX, Vn=1,,N
YEV,

and

f(x) = n_rga?(N‘ f.(x) V x€X .

U,=x
Since L(,") is lower semicontinuous, {f(*),...,fn(*)} are lower semicontinuous
functions on X, and since {U,,..,Uy} are open in X, f(*) is a lower
semicontinuous function on X. Now L(x,y) > 0 whenever afx,y) < a + ¢ and
in particular when x€U, and y€V, for some n = 1,..,,N. It follows that f(*) is
positive. Hence since f(*) is a positive lower semicontinuous function on
compact X we can chouze

0 <6< inf f(x).
x€X

Combining the above results, for every x€X there exists a yEY such that
o(x,y) < a + € and L(x,y) > 6. We can now find similarly to the construction
of U),...,Uy and V,,...,Vy above a cover fJ,,,_,,fIM of X and open V,,,,,,\?M
contained in Y such that o(x,y) < a + ¢ and L(x,y) > § for all x€U_, y€V_,
and m =1, M. Let W = \7m for m =1, ,M to complete the proof of the
Lemma. O

Proof of Theorem 3.2 Let X =23\Y. From Lemmas 3.1 and 3.2 there
exists a 6 > 0 and open sets W,, W), contained in Y such that for every
x€X there exists an m€{1,...,M} such that

Plx,y) > 6 62* vV yEWL . (3.16)
Using (3.16) and the Markov property
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P N {6EX) < P{EEX) T sup P{&nXléy = x)

k=m

a1 r .

< II |1 —inf P{£, 1€EY|E = x}]
k=m L xeX
n~1 [ .

< II |1 —inf [ py(xy) #(dy)
k=m 1eX Y
n~1 [

<T [1-ae] va>m,
k=m *

where A =6" minM H(Wyg) >0 (since ¢(*) is assumed positive on open
m=l1,..,

subsets of X). Hence

PN{&e)< T [1-a67|=0 vm,
=m

ke=m

where the divergence of the infinite product follows from the divergence of the
infinite sum (3.12), and the Theorem follows. O

3.4 Convergence of the General State Annealing Algorithm

In the Section we apply the results of 3.3 to obtain certain asymptotic
properties of the general state annealing algorithm. Throughout this Section
(3.4) we shall use the notation introduced in 3.1. We shall also refer to
conditions (A1)-(A7) given in 3.2.

3.4.1 Bounds on Transition Probabilities for the General State
Annealing Chain

In order to apply the results of 3.3 we need to obtain a bound on the d-
step transition density p(k'k+d)(',') of the ¢-absolutely continuous component
of the d-step transition function P“'Hd)(',') of the annealing chain {&}.
Toward this end we make the following definitions. For every x,y€X and d€N
let Aq(x,y) be the subset of £¢*! such that (x = xq,...,xq = ¥)EA4(x,y) if for
every n = 0,...,d—1 one of the following is true:

(i) Xp+1 # Xp and Q(xnvxn+l) >0
(i)  x541 =%, and q(xg,%541) > 0, d)({xn}) >0
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(iii) xp41 = X, and q(x4,z) > 0 for some z€X with U(z) > U(x

n)*

The following proposition gives an alternative characterization of Ay4(*,*).

Proposition 3.3 Assume (Al1)(A6). Let x,y€~¥ and dENM Then
(x = Xg,...,xg = ¥)EA4(x,y) iff there exists a version of p,(*,) such that

max {pk(xn’xn+l)’ Pk(xn’{xn+l})} >0 Vo= 0’---nd_1 .

Proof By the Radon-Nikodym Theorem and (3.2)

£ r

< N
Pk(x’A) = f pk("’y) ¢(dY) + Pk(va) °
A

i

= [ a(xy) su(xy) (dy) + % (x) &(x,A) 4

A -

! for all x€X and AEB, where ¢(*) and P,(x,") are mutually singular. Hence »
)

N(x) '

Px(xy) = a(x,¥) se(x,y) + — =+ X(y(¥) :

’ ’ #lfx}) " .

for all x€X and ¢-a.e. yEX, and :,
Pe(x,{y}) = a(xy) sulxy) $({y}) + n(x) X(x(¥) (3.17) o

for all x,y€X. Fix the following version of p(*,"): .

a(x,y) si(x.¥) if y#x, ;

- e(x) i

— < . — .

Pe(x,¥) q(x,x) + () if y=x ¢{x})>0 (3.18) 2
] it y=x, ¢{x})=0 -

‘

for all x,y€X. Now under (A1)-(A6) for every x€L ~,(x) > 0 iff q(x,z) > 0 for e
some z€X with U(z) > U(x). It follows from (3.17), (3.18) and this last remark
that (i)-(iii) hold iff py(%X,,Xg41) > 0 or Py(x,,{Xp41}) > 0 for all n =0,..,,d—1. )
o N
»_:
Suppose L is finite, ¢() is counting measure and q;; = q(i,j). In view of "3
Proposition 3.3 the above definition of A4(*,*) reduces to that given in Chapter :
2. >
S
For each d€lNlet :'.

:

@
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Uglrtgrnxa) = 5 max{0, Uxyyy) — Ulxa)}

n=0

for all x,,...,x4€%, and

inf Ug(X) if y#x
Valxy) = M ,
o0 if y=x,

V(xy}’) = i%f vd(x’y) y

for all x,y€X. We shall call V4(x,y) the d-step transition energy from x to y,
and V(x,y) the transition energy from x to y. We should like to point out a
difference in the definition of Vy(*,”) here and in Chapter 2 (compare (3.19)
and (2.45)). Here we set Vy(x,x) = oc; see the remark following Proposition
3.4 for an explanation.

We first prove that the d-step traunsition energy (and hence the transition
energy itself) is an upper semicontinuous function.

Proposition 3.4  Assume (Al)-(A6). Then Vy(,*) is an upper
semicontinuous function from ¥x% into [0,00].

Proof Let x,y€X such that Vy(x,y) < oo, and let € > 0. From (3.19) we
have that y # x and there exists MEA4(x,y) such that Uyg(N) < V4(x,y) + €/2.
It is clear that X can be chosen such that all of the self-transitions in X occur
consecutively. We consider here the following case (the other cases are
similar):

A=(x=x9=""=Xp_| %Xy # " #Xg =)

where 1<m<d. Now q(x,x) >0 or q(x,2) >0 for some 2€Y¥ with
U(z) > U(x), and q(xg,%,4+1) > 0 for all n = m—1,...,d—1. Hence by (A4), (A6)
we can choose neighborhoods B, of x and By of y with B,MB, = (J such that
for every u€B, and v€B, we have q(u,u) >0 or q(u,z) >0, q(uxy) >0,
q(xg-1,v) > 0, and

[U(u) — Ux)| + [U(v) — Uy)] < é X
Now let (u,v)€B,xB, and

l'f‘

L J
S
"

S

-.

~

A

l. i—l' l-l
Aty G 4
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\

by

0 = (Uy...,U,Xg...sXq—15V) - .

m times X
K
Then o€A4(u,v) and :
€ >

[Ua(o) — UaM)] < [U(u) = Ux)| + [U(v) = U(y)| < Py

._
and so -
Valu,y) S Uglo) S Ugh) + 5 < V() + ¢ %
o

and consequently Vy4(*,*) is upper semicontinuous at (x,y). Since x,y were
arbitrary points in ¥ which satisfy Vg(x,y) < oo, V4(*,') is upper >
semicontinuous. O

4

Remark Let >
~ L)

Vy(x,y) = inf Uy(Xh Y x,y€L \

d( ’y) AeAdxy) d( ) DA .:

so that Vy(x,y) = Vg(x,y) for y  x but V4(x,x) 5 V4(x,x) in general. It is easy N
~ A

to construct examples such that Vy(x,y) is not upper semicontinuous at y = x. Ry
We defined V4(x,x) = oc to avoid this problem. ®

The following theorem gives a lower bound on the d-step transition
probabilities of the annealing chain in terms of the d-step transition energy.

Theorem 3.3 Assume (Al)-(A7). Let {T,} be monotone nonincreasing and .
dEN Then there exists a version of p(***9(:*) with the following property: N
given € > 0 for every u,v€X there exists a neighborhood B, , of (u,v) in ExE -
and a positive number K(u,v) such that -
Va(u,v) + € 7l
p®*+(x,y) > K(u,v) exp | - ————— V (x,7)EB,, .  (3.20) ®
Tyia—1

Remark We do not assert (nor do we believe it is true in general) that ¥
there exists a positive number A such that ;‘
®

Vy(x,y) + ¢ >

p(k'k+d)(x)}') 2 Aexp |— __d(-—’)__ vx,y€L , (3'21)

Trta-1

which is similar to the lower bound in (2.48) for the finite state case. Of -
s

course if ¥ is finite and #(*) is counting measure than we do obtain (3.21). e
®

R e O S e e e v S e T R
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We will need the following lemma for the proof of Theorem 3.3.

Lemma 3.3 Assume (A1)-(A7). Then Py(',{*}) is a continuous function on
3.

Proof From (3.2)

Py (x,{x}) = q(x,x) &({x}) + %(x)
=1— [ q(xy) s (xy) &(dy)

y#x

= q(x,x) ¢({x}) + [ alx,y) 1 — si(x,¥)] &(dy) , (3.22)

for all x€%. Let x€X and {x,} be a sequence in £ with x,—x. Now from the
second equality in (3.22)

Iigl_‘sggp Py(%p{Xa}) <1 = lim [ q(x,,y) s(x,y) é(dy)

D—+00

q(i;;,>°
=1— [ qxy)sdxy) ¢(dy)
g >0
= Py(x,{x}) , (3.23)

where we have used (Al)-(A6) and the Dominated Convergence Theorem to
evaluate the limit. Also, from the third equality in (3.22)

lim inf Py(x,,{X,}) > lim inf q(x,,%,) ¢({X,})
n—oo D—+00

+ lim [ qx,y) [1 = se(xmY)] #(dy)
0= g(x,y)>0

> q(xx) §({x}) + lim [ qlxgy) (1 — s(xq,¥)} &(dy)

D0 g(x,y)>0

=q(xx) H{x}) + [ alxy)[1 = sxy)] é(dy)

q(x.y)>0
= Py(x,{x}) , (3.24)

where we have used (A6), (A7) to obtain the second inequality and (A1)-(A6)
and the Dominated Convergence Theorem to evaluate the limit. Combining
(3.23) and (3.24) gives
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lim Pk(xn’{xn}) = Pk(x’{x}) ’
n—+00
and since X, {xn} were arbitrary the Lemma follows. O Lo

Proof of Theorem 3.3

Let o
_ Q(xr}') il y#x, ,
RN = Py i y=x, (3:25) 4
for all x,y€X, and :
d-1 )
Te(Xor..oXa) = TT Trrn(XniXas1) » (3.26) L/
p=0 >
%
t(Xgs...5Xq) = i%f Ty(%0s...1X4) » (3.27) :
for all xg,..,x4€%. If Z€Z*! then since {T,} is nonincreasing {f (N} is
nondecreasing and so f(X\) = f;(\) obtains the infimum. Note that F(\) >0 -]
for all NEA4(x,¥), x,yEL.
For every x€Y define a measure ¥(x,*) on (¥,B) by 5
Yx,A) = 6(A) + [1 — 4(6)] AA) 3
and define a measure ;L(x,') on (2441, B4+1) by E
~ ‘r-
Ux,AgxxAq) = [ 8(x,dxo) [ Yxoidxy) *** [ Pxg_1,dxq) - .
Ay A, Ay {
L)
It follows from (3.2) and (3.25)-(3.27) that -5
TN [~ .
PR A)y > [ F(\) exp [- ) ] Y(x,d\) (3.28) -
AEALxY) , Tk+d—1 R
YEA ..
for all x€¥ and A€EB. &
For every n = 1,...,d and x,y€X let 5
M, (x,y) = {(xov---’xd)E/\d(er) P X FY X =Y Vv k = n,..,d} ‘
Then from (3.28)
d Ug(\) |~ 2
PrX*xA) > S [ F(\) exp [— ) ] Yx,dN) . (3.29) t.
n~1 AeM,(x,), Tyra ~3
YEA -
For every n = 1,...,d let TI () be the projection map from 7441 t6 5. and for '.
-
"
v
4
.
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,:."\
l::;-.

every x€Z let 1,(x,*) be the image measure of a(x,') under IT (*); also let ~:
X'ln = (X,,,,,X) . :S;:

« "R

n copies iy

23

Then applying Fubini’s Theorem to (3.29) Rl

PEX )y A) > [ fi(x,y) #(dy) (3.30) o5
A e

where
a1 _ U,V

fk(x’Y) = E f r()‘vY'ld—n-H) exp | — T 2 ] 14/)x:(x’d>‘) . (3°31) \}-.‘
n=1 M M,(x,y) k+d-1 t’:'

-

Now by the Radon-Nikodym Theorem we have i:;:
™

P(k’k+d)(x,A) — fp(k'k*'d)(x,y) ¢(dy) + f’(k’k+d)(x,A) (3.32) }::
A L)

where ¢(*) and P®¥**d)(x.) are mutually singular. It follows from (3.30) and .':'.:
(3.32) that 2%
"

[ o®x,y) ¢(dy) > [ filx,y) #(dy) o

A A i ’.

for all x€¥ and A€B, and so \
P y) 2 filx,y) (3.33) i

iy

for all x€L and ¢-a.e. yEL, and consequently there is a version of p**+d)( ) Gt

such that (3.33) holds for all x,y€%.. [
-

S
Fix € > 0 and u,v€X. For each x,y€X if V4(u,v) < oo let :
N,(x,y) = el M, (x,y) : Uy(N) < Vy(u,v) + €} ,,
forn =1,...,d, and set '..
d - {J‘
g(x,y) = )Y f TNy laopsr) Yu(x,dN) ; (3.34) N
p=1 N,(x,y) '::.'
=3
if V4(u,v) = oo set g(x,y) = 1. Then from (3.31) ::':
Vy(uv) + € b
f(x,y) > g(x,y) exp |- ————| Vxy€er. (3.35) =3
Titd-1 RO
..'
We make the following ~
s
—- .
.‘.'_.\
~
.9
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Claim There exists a neighborhood B of (u,v) in £xZ such that

inf .
i g(x,y) >0

Suppose the Claim is true. Then by setting B, , = B and
K(u,v) = inf g(x,
(u,v) ol g(x.y)

and combining (3.33) and (3.35) we obtain the Theorem. It remains to prove
the Claim.

Proof of Claim Assume V4(u,v) < oc. From (3.19) there exists MNeAy4(u,v)
such that Ug(X) < V4(u,v) + ¢, and since F(\) > 0 there exists § > 0 such that
f(\) > 6. Also from (3.19) we must have u # v, which implies there exists an
n€{l,...,d} such that AéM,(u,v). It is clear \ can be chosen such that all of
the self-transitions in A which occur before the n'® transition (which is not a
self-transition) occur consecutively. We consider here the following case (the
other cases are similar):

x_—-(u=uo='"=um—17£um7’£'"7"‘$un-l5’£un=un+l='"=V)

where + <m <n <d. Using (A4), (A6) and Lemma 3.3 we can choose
neighborhoods B, of u, B, of v, and ﬁk of u, for k =m,, ,n—1 with
ﬁn_l N B, =(J), such that for every x€B, and y€B, we have
Ug(0) < V4(u,v) + € and #(0) > & for all o€{x}™ x By, x *** x B,_, x {y}d~2+*L..
Let

0,, = {x}™ x By x*xB,., Vxy€L,

and B =B, x B,. Then for every (x,y)€EB we have O, CN,(x,y) and hence
from (3.34)

g(x,y) > Of 6 Yu(x,dN)

> 6 ¢(By) * = * #(B,)

>0

by (A3). This proves the Claim and hence the Theorem. O
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3.4.2 Visiting of Neighborhood of the Set of Global Minima with "

Probability One e

ﬂ."-

We now give a theorem whichs gives conditions such that annealing
chain {§,} visits a given neighborhood of S infinitely often with probability
one. Let ¢ > 0 and

e

S, = {x€X¥: U(x) < inf U(y) + ¢}
yez

To avoid trivialities we will need the following assumption:

(P) Every i€X\S, can reach some j€S,.

rervr v s

Let

= sup inf V(x,
xeT‘{)S( YE 33 Y)

Note that under (A1)-(A4) and (A6) (so that X\S, is compact and by
Proposition 3.4 V(*,*) is upper semicontinuous) (P) holds iff V, < .

Theorem 3.4 Assume (A1)-(A7) and (P). Let {T,} be monotone
nonincreasing and

o0 V: +6
Yexp|—-———|= (3.36)
=1 Ty

for some § > 0. Then P{{,€S, i.0.} =1 for all ¢ > 0.
Proof We first show that there exists d€¥ such that

)
V > f Vy(x,y) — — 3.37
- xég S, ylélS. d( y) 2 ( ) .

For every x€X\S, there exists a d(x)ENsuch that

] . 6 N
inf Vyglx,y) < inf V{ix,y) + = <V, + —.
y€s. aen)(%:3) y€S. (y) +5 SV +3 N
But by Proposition 3.4 for every x€X\S, V44)(*,*) is an upper semicontinuous A

function on £xX and so insf Vd(x)(':)’) is an upper semicontinuous function on j

YES, ‘
3, and consequently there exists a neighborhood B, of x such that ol

KR

. e, b "

;gg( Va (y) < Ve + Py V u€B, =

Now {B,N(X\S,) : x€X\S,} is an open cover of compact £\S, (in the relative

topology) and so there exists x,,...,xNEZ\S, such that -

T R N e T T e A e L T T e s e pigie e
R R S e e G e
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N
E\sS,.C U B, .
D=1
Let d° = max d(x,). Now it is easy to see that for every x€X

n=1, N

inf V,_(x,y) < inf V_(x, >m.
inf a(x Y)_ylgS( m(X%y) Vn>m

Hence for every x€X\S,

e 6
'fv',="'°fv,<V( =
s, VB =R b <Vt
and (3.37) follows by setting d =d’.

Next, from Theorem 3.3 for every u,v€X there exists a neighborhood B,y
of (u,v) in £x¥ and a positive number K(u,v) > 0 such that

Va(u,v) + 6/2

Tk+d—l

p(k,k+d)(x,y) Z K(U,V) exp [— A (st)EBu,v .

Let

kd+d-1

~ 1
€k=€kd’ €k=e"p[—_——]
and

a(x,y) = V4(x,y) + -‘25- V x,y€X . (3.38)

Then {€,} is a Markov chain with 1-step transition functions {Py(,")} whose
¢-absolutely continuous components have densities {p,(*,")} which satisfy

p(x,y) > K(u,v) 91‘:("") Y (x,y)€By 5 ¥ u,veL .
Let

a = sup inf ofx,y).
1€L\S, y€S, (x.y)
By (3.37) and (3.38) a <V, + 4. Hence since {T,} is nonincreasing the
divergence of the series in (3.36) implies that

o0
fg = 0.
k=1

Hence we may apply Theorem 3.1 to {Ek} with Y =S, to get
P{£,€S, i.0.} =1 and so P{{,€S, i.0.} =1. O
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If ¥ is finite, ¢(*) is counting measure, and € is small enough we

obtain Theorem 2.9 modulo the factor of § in (3.36) as compared with (2.67).

Remark
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CHAPTER IV -

DIFFUSION TYPE ALGORITHMS '

4.1 Introduction to the Langevin Algorithm g
In Chapter 2 we discussed the annealing algorithm proposed by
Kirkpatrick et. al. [18] and Cerny (3] for combinatorial optimization. In A/
Chapter 3 we extended the annealing for optimization on general spaces. A
Motivated by image processing problems with continuous variables, Geman ;
and independently Grenander [13] have recently proposed using diffusions for 1
optimization on multidimensional Euclidean space. In this Section we ‘e
describe this method. Like the annealing algorithm, this approach to global ‘
optimization has generated alot of interest and there already exists a -
significant literature on the subject. R
Let U(*) be a nonnegative continuously differentiable function on B'. The 7
goal is to find a point in B' which minimizes or nearly minimizes U(*). Let i.
T(*) be a positive Borel function on [0,00). As with the annealing algorithm N
we shall refer to U(*) as the energy function and T(*) as the temperature N
schedule. Let w(*) be a standard r-dimensional Wiener process and let x{*) be e
a solution of the stochastic differential equation v
®

dx(t) = — VU(x(t))dt + V2T(t) dw(t), t>0, (4.1) >

for some initial condition x(0) = x, (by a solution we mean that x(*) is a :
separable process with continuous sample paths with probability one, x(*) is 3
nonanticipative with respect to w(*), and x(*) satisfies the Ito integral >
equation corresponding to (4.1)). For a fixed temperature T(t) = T > 0, (4.1) .
is the Langevin equation, proposed by Langevin in 1908 to describe the :'.:
motion of a particle ip a viscous fluid. Geman and Grenander suggested that :::
(4.1) could be used to minimize U(*) by letting T(t)—0. Following Gidas’ [11] -]
notation, we shall call the algorithm which simulates the sample paths of x(*) °
with T(t)—0 the Langevin algorithm. 3
The motivation behind the Langevin algorithm is similar to that of the '1
annealing algorithm. Let xT(*) be the solution of (4.1) with T(t)=T, a -
positive constant, and let PT(',',') be its (stationary) transition function, i.e., '2
o

r-_:

rl
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for every t > 0 and AER' PT(t,',A) is a Borel function on Rf

for every t > 0 and x€R PT(t,x,°) is a probability measure on
(R,B) '

PT(t,x,A) = f PT(s,x,dy) PT(t—s,y,A) for all 0 <s <t, x€R', and
AEP
P{xT(t)eAKT(s)} = PT(xT(s),A) w.p.1 for all 0 < s < t and AEB"
Under certain conditions (c.f. [31]), P¥(+,*) has an invariant Gibbs measure
n7(), ie.,
NT(A) = [ IT(dx) PT(t,x,A) Vt>0, VA€eB,

where

[ exp(— U(x)/T) dx
A

nT) = [ o (= UO)/T) 4y v AEB",
and furthermore
P{xT(t)e}—IIT(") weakly as t—oc. (4.2)
Now for suitable U(*)
NT()—=I"(*) weakly as T—0 (4.3)

where H‘(') is a probability measure on (R ,B") with support in the set S of
global minima of U(*); see [17] for conditions under which (4.3) holds and a
characterization of I1°(*) in terms of the Hessian of U(*). In view of (4.2) and
(4.3) the idea behind the Langevin algorithm is that by choosing T = T(t)—0
slowly enough hopefully

P{x(t)e'} = [IT¢) (t large)
and then perhaps
P{x(t)e}—I1'(*") weakly as t—x (4.4)
and consequently x(t) converges to S in probability.

The Langevin and the annealing algorithms both have a stochastic
descent behavior whereby ‘‘downhill”” moves are modified probabilistically by
‘“uphill” moves with fewer and fewer uphill moves as time tends to infinity
and temperature tends to zero. However, the simulations of these Monte
Carlo algorithms are quite different. To simulate sample paths of x(*) we
might discretize (in time) the Langevin algorithm as

---------
----------------

e e T,
‘j.'v )
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xp+1 = Xg — VU(xp)e + V2T (ke)e wy , (4.5)

where {w,} is a sequence of standard K'-valued Gaussian random variables
and ¢ is a (positive) discretization interval, and simulate sample paths of {x;}
by generating pseudorandom Gaussian variates. VU(*) may be computed
from an analytical formula or approximated in a standard fashion. Compare
this simulation with that of the annealing algorithm (see Chapter 2).

Geman reports some encouraging numerical results have been obtained
by Aluffi-Pentini et. al. [32] with a modified Langevin algorithm which uses an
interactive temperature schedule. Tests have been run on U(*) defined on R
with r = 1, ,,14. Gidas also reports a numerical experiment with a single U(*)
defined on R with 400 local minima. He suggests that a combination of the
Langevin algorithm with the popular multistart technique (c.f. [28]) might
improve the performance obtained by using either approach alone. We
remark here that comparing different global optimization algorithms is in
general a very difficult problem. Rubenstein [29] discusses some analytical
methods for comparing different algorithms. Dixon and Szego [5] have
attempted to define a standard set of test functions which might be used to
empirically compare different algorithms. It is not clear that either of these
methods are suitable for evaluating the performance of the Langevin
algorithm. These tools it seems were designed to compare algorithms which in
some way take advantage of the structure of smooth functions on low
dimensional spaces. We regard the Langevin algorithm as a ‘‘universal”
algorithm which may be used on functions defined on high dimensional space
whose structure is essentially unknown or cannot be simply characterized. It
seems that the best test for the Langevin algorithm is the particular problem
one wishes to solve.

We shall now outline those convergence results for the Langevin
algorithm which are known to us. We refer the reader to the specific paper
for full details.

Geman and Hwang (9] were the first to obtain a convergence result for
the Langevin algorithm. They consider a version of the Langevin algorithm
restricted to a compact subset of R (using reflection barriers). They show
that for a temperature schedule of the form

[

T(t)

= t | >
log t (¢ large)

that if ¢ is no smaller than the difference between the maximum and
minimum values of U(*) then (4.4} is obtained.
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Gidas [11] has obtained necessary and sufficient conditions for the
convergence of the Langevin algorithm in all of R', using partial differential
equation methods. He shows that there exists a constant A’ such that for
temperature schedules T(t)|0, (4.4) holds iff

—_— ——

T(t)

dt = ¢

o0
f exp
0

Furthermore, the constant A’ is the natural continuous analog of Hajek's
constant (see (2.10)). Chiang et. al. (4] have also obtained sufficient
conditions for the convergence of the Langevin algorithm in all of R using
large deviations theory.

Kushner [21] has obtained a detailed picture of the asymptotic behavior
of a class of diffusions related to the Langevin algorithm and certain discrete-
time approximations as well. Kushner considers (in discrete-time) an
algorithm of the form

Xia1 = X + 30X 6y) + V2 20X )w, (4.6)

where {,} is a sequence of bounded random variables and
c
=— k1 .
aL log k (k large)

In the special case where b(*) = E{b(*,£,)} = — VU(*) and of*) = I, (4.6) is a
stochastic approximation version of the Langevin algorithm with noisy
measurements of VU(*). We shall refer to the Monte Carlo algorithm which
simulates the sample paths of {X;} as Kushner’s algorithm.

We remark that the conditions under which the above results are
obtained typically include

(i)  U(*) has continuous second-order partial derivatives

(i) The local minima of U(*) consist of a finite number of compact
sets; for Gidas’ result it is actually required that the local minima
be isolated and nondegenerate.

These assumptions are stronger than these assumed in Theorem 3.4, where it
was only required that U(*) be continuous on a compact metric space. Of
course the conclusion of Theorem 3.4 is only that the annealing algorithm
visits a given neighborhood of S infinitely often with probability 1, whereas
the above results show convergence of the Langevin algorithm to S in
probability.
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In this Chapter we shall examine certain issues concerning the Langevin
and annealing algorithms which seem important to us and apparently have
not been considered elsewhere. We proceed as follows. We have seen that
the motivation behind the annealing and Langevin algorithms is quite similar.
The first question we would like to answer is:

* what more can be said about the relationship between the
annealing and Langevin algorithms?

In 4.2 we shall show that an annealing chain driven by white Gaussian noise
converges in a certain sense to a Langevin diffusion. Now it seems clear that
the annealing algorithm and the Langevin algorithm each have certain
advantages. The Langevin algorithm, for example, looks like (for large time
and small temperature) a gradient descent algorithm, and gradient descent
algorithms and their higher order generalizations such as Newton’s algorithm,
which are ‘‘local’’ algorithms in the sense that they use only the value of the
objective function and a finite number of derivatives at the current iterate to
obtain the next iterate, are efficient at finding local minima. The annealing
algorithm, on the other hand, is not strictly ‘“‘local” in that it uses the value
of the cbjective function in some set containing the current iterate to obtain
the next iterate. In this sense, the annealing algorithm might be called
“semilocal” or even ‘‘global” depending on how much of the objective
function is used. Following the usual thinking behind both the annealing and
Langevin algorithms, the idea is to make large fluctuations initially and small
descent-like moves eventually. In view of these considerations, the second
question we would like to answer is:

* is there a natural hybrid algorithm whose initial behavior resembles
the annealing algorithm an whose large time behavior is similar to
the Langevin algorithm?

In 4.3 we propose such an algorithm based on the results of 4.2.

4.2 Convergence of the Annealing Chain to a Langevin Diffusion

In this Section we shall examine the relationship between the annealing
and Langevin algorithms. We shall show using a result of Kushner's {22] on
the weak convergence of interpolated Markov chains to diffusions that a
parameterized family of annealing chains driven by white Gaussian noise
interpolated into piecewise constant processes converge weakly to a time-
scaled solution of the Langevin equation. The weak convergence here is in
the sense that the probability measures induced by the interpolated chains on
the path space of functions without discontinuities of the second kind

et AN et e MR PR T AT N AT AT, R
SRR R e e e A AR A S e e T e . -
B P - AR ALN . S
A A .\.'_‘-‘_ AN NTATS _‘.\J.'i__‘\..\"\(\ RN P e e e el

L] A .

1Y,

ol ol al Vel " "aty’

== a o 4
PACIAR |

.
v

vy

ST N 4
Y

LYY

A A

3

., e
o {\xs'

L [P

RV AR ) ’
‘. _‘n‘uj'- AN '\‘ Y "—" "

XA

L ':'../.
@ s

A A A

e 9y

LI

P

D)

'

s
[N

* "51-'

."“’
v oo

Iy

)

SRR
» . » et

e

o
. e
“ 2ty Se ‘2.

>

o n;\' .



.""‘_A.,‘_.v'."“"",‘.‘!..-. .u-.u VvV Ve

78

converge weakly to the probability measure induced by the limit diffusion.
This technique is the same one used to justify the popular diffusion
approximation method, whereby a complicated possibly non-Markovian
process is approximated by a simpler diffusion process (c.f. [23)).

Let D'[0, T] denote the space of B-valued cadlig functions on [0, T! with
0 < T < oo, i.e., functions which are right-continuous on [0 ,T!, have left-hand
limits on (0, T], and are left continuous at T. The following elementary results
on weak convergence of probability measures may be found in [2!. There is a
metric dr(*,) on D'[0,T] with respect to which D'[0,T} is a complete separable
metric space, and if f(-)€D’[0,T] and {f,(*)} is a sequence in D'[O,’-I—‘] then the
convergence of f,(*) to f(*) in D'[0.T} implies convergence at all points of
continuity of f(*) (convergence of f,(*) to f(*) in D'[0, T] is roughly equivalent to
uniform convergence outside of any neighborhood of the discontinuity points
of f(*)). Let £(*), {€(*): € > 0} be processes with sample paths in D*'0,T , or
equivalently, random variables which take values in D0, f‘ acd let
p(*), {#(*) : € >0} be the probability measures they induce on the Borel
subsets of D'(0, T] We shall say that &(*) converges weakly to &(+) in D'i0,T)
and write £ (*)—¢(*) weakly (in D'[O,T]) if u(°) converges weakly to u(*) as
e—0, i.e., if

lxm J 1(x) du(x) = [ f(x) du(x)

for all bounded continuous f(*) on D'[O,T]. Let D’[0,0c) denote the set of K-
valued functions on [0,0c) which are right-continuous on [0,) and have left-
hand limits on (0,oc). Let

d(f.g) = E — dy(f.g) v f,g€ED|0,x) .
n=1
d(*,*) is a metric on D'[0,00) with respect to which D'[0,x) is a complete
separable metric space, and we can define the weak convergence of processes
with sample paths in D'[0,o¢) analogously to D'0, T’ with T finite.

Suppose &,(*)—£(*) weakly (in D[0,T]) as ¢—0 with 0 < T < ~. Then it
can be shown that the set of points t€0,T] such that p({S(t_) # (t)}) > 0 is
at most countable. Let

= {t€[0,T] : n({§(t.) # {(t)}) =0} .
Then it can also be shown that for any points t,, .{,€C the multivariate
distributions of {&(t;),...,£,(t,)} converge to the multivariate distributions of
{€(t1),....&(t,)} as e—0. But the weak convergence of &, (*) to &(*) says much

more than this: if f(*) is a continuous functional on D70, T (or just ;-a.s.
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v

5
continuous) then (&£ (*))—f(£(*)) weakly as e—0. -

Let C'[0,T| denote the space of B-valued continuous functions on 0, T)

with 0 < T < oo. If we equip CF[0, T] with the uniform topology for T < oo -
and with the topology of uniform convergence on compacts for T = oo, then ’
c’lo, T] is a complete separable metric space and we can define weak b
convergence of processes with sample paths in C'[0, T] Our reason for using 4
D'(0,T] is simply that we shall make use of Kushner’s result on the weak .
convergence of Markov chains interpolated into D'[0, T]. Kushner's stated }1‘-
reason for working with D*[0,T] as opposed to CF[0 ,T] is that it is easier to ".:
verify tightness (relative compactness) for a sequence of probability measures :'.;
on the Borel subsets of D'[O,’f]. If the limit process is a jump diffusion then of ‘o
course it would be necessary to work with D'[0,T], but this is not an issue j:::

here since our limit processes are assumed to be ordinary (continuous sample
paths with probability one) diffusions.

We now set up the notation necessary to state Kushner’s Theorem on the s
weak convergence of interpolated Markov chains. It will be notationally
convenient in the sequel to assume that all processes are defined on a common
probability space (), F, P) and we shall do so without further comment. Let
0<T<oo. Let F(-) and F.(), € > 0, be R-valued Borel functions on o
B'x[0,T), and let G(*,) and G.(*,*), € > 0, be rxr matrix-valued Borel functions

L J
on B'x[0,T]. For each € >0 let {{;} be a Markov chain with state-space B -
such that j.::_‘

E{éks1 — &kléc} = Fo(&kke)e *
€ € € .

E{(&k+1 — €00 (€1 — EDIED} = Gl ke) Go(E¢ke)e -
o4

with prgbability one. Interpolate {{;} into a process £,(*) with sample paths ,'-:j
in D'[0,T] by )
T )
Et(t’) = 6}: v (k_l)E <t < ke , Vk=1,..[— -3

€ g

Here is Kushner's Theorem in slightly modified form. )
Theorem 4.1 (Kushner [22]). Assume ‘-.
(K1) F(+,*), G(*,*) are bounded and continuous i
(K2) F,(+,*), G,(*,") are uniformly bounded for small € > 0 P
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[7/:]

®3) B £ [FUeckq-Fckel + 6. (6ke)-G(Ekal e[ — 0
=1

as €—0
T/e]
(K4) E| 5 [Isﬁﬂ—&ﬁ—Ff(e;,ke)eF*a}—»o
-1

as €—0 for some o > 0.

Let v(*) be a standard r-dimensional Wiener process and assume that
dg(t) = F(§(t),t)dt + G(E(t),t)dv(t), 0<t<T,

has a unique solution £(*) (in the sense of multivariate distributions) with
initial condition £(0) = &£,. Assume that

§i—€, weakly as ¢—0.
Then

E()—€()  weakly (in D[0,T]) as e—0.
Consider now the following family of Markov chains. Let U(*) and T(*)

be defined as iz 4.1. For each € > 0 let {2z} be a Markov chain with state
space B and 1-step transition functions {Pg(*,)} given byt

Py(x,A) = { sk(xy) dN(x,€eT)(y) + w(x) 6(x,A) (4.7)

for all xER" and AEB", where

tsee Chapter 3 for general state space Markov chain notation

''''''''''

---------
» -
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_ Uly) = U(x)
T(ke)

1 if Uly) < U@, (4)

exp if Uy) > U(x)

sg(x,y) =

Y%(x) =1 — [ sg(xy) dN(x,€D) (v), (4.9)

and §(x,") is the unit measure concentrated at x, for all x,y€R’. Comparing
(4.7) and (3.2) it is seen that {z{} is infact an annealing chain of the type
introduced in Chapter 3 with state space the measure space (X,B,$) where
L =F,B =B, ¢() is Lebesque measure, and

Q(x,A) = { q(x,y) ¢(dy) = N(x,eI) (A) V AcH

(hence the annealing chain is “driven” by white Gaussian noise). It will be
convenient to introduce the following notation. For each € > 0 let

_ Ufy) — U(x)
T(t)
1 if Uly) <U(x),

exp

if U(y) > U(x)

s(x,y,t) =

Ye(x,t) =1 — [ s(x,y,t) dN(x,€l) (y) ,
for all x,y€R" and t > 0, and let
P.(x,A,t) = [ s(x,y,t) dN(x,€I) (y) + Ve(x,t) §(x,A)
A

for all x€R', AER’, and t > 0. Then
P (x,A,ke) = P{(x,A) V xER", V¥V AEB .
For each € > 0, xER and t > 0 let

b.(x,t) = —:- [ v = %) P(xdyt)
a(xt) =+ [ (¥ = %) ® (v — %) Pufxdyt)

and o,(x,t) be a positive square root of a (x,t) i.e.

o, (x,t)0,(x,8) = a (x,t) .

Since P(*,",ke) = P¢(*,*) is a (regular wide-sense) conditional distribution for
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€ ] €
Zy 41 Given z,

E{ayy — zilag) = b(agke)e

E{(zf1 ~ 20) ® (sf1 — 2|} = ozike)oi(zke)e

with probability one. Interpolate {zj} into z,() with sample paths in D'[O,f]
by

2 (t) =25 V (k-1 <t <ke, Vk=1,., [I‘

Here is our convergence theorem.

Theorem 4.2 Assume
(A1) U(*) is continuously differentiable, VU(*) is bounded and Lipshitz
(A2) T(*) is continuous

Let w(*) be a standard r-dimensional Wiener process, and let z(*) be a solution

of

dz(t)=—1¥—r%%»-dt+dw(t), 0<t<T,

with initial condition z(0) = z5. Assume that

(4.10)

z2;—zo weakly as €—0.

Then
z(")—z(*) weakly (in D'[0,T]) as ¢—0.

Remark Let 7(*) be a solution of
) =2T(t), 0<t<T,
and let
Bt) =a(nt)), T(t)=T((), O0<t<T.

Clearly, Z(*) is a Markov process with continuous sample paths with
probability one. Now by standard calculations

tit is well known that (4.10) has a (strongly) unique solution under (A1), (A2)
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-‘-'
E{i(t+h) — i(t)[i(t)} = — VU(E(t))h + O(h%/?) e

. t+h e
E{(Z(t+h) — i(t))® (2(t+h) — () [a(t)} = [ V2T(s) ds'l + O(k?) €3
t By
as h—0, uniformly for 0 <t < T, with probability one. Hence by a Theorem L)

of Doob’s [8, p. 288| there exists a standard r-dimensional Wiener process w(*)

-4
such that Z(*) is the solution of o
di(t) = — VU(E(t))dt + V2T(t) dw(t), 0<t<T. (4.11) =4
Hence the interpolated annealing chain z,(*) converges weakly to z(*), which is H'.f.
infact a time-scaled solution of the Langevin equation (4.11). e
e
We shall need several lemmas before we can apply Theorem 4.1 to prove :;:
Theorem 4.2. Let \'_",.
Ud
@,
exp [— (VU(x), y—x) ] if (VU(x), y—=x) >0 e
8(x,y,t) = T(t) v
1 if (VUx), y—x) <0 (+12) ]
e
for all x,y€ER" and t >0. s
Lemma 4.1 Assume (Al), (A2). Then there exists a constant K such that
b(xyt) = 8(xy ) <Kb—~xF, vxyeR, VvVo<t<T. e
o
)
Proof Let :‘_‘::'_
f(x,y) = U(y) = U(x) — (VU(x), y—x) VY x,y€R . :
By the Mean Value Theorem and (A1) there exists a constant ¢ such that ‘-J_\
feey)l < eb—x[ v xyer, ®
and by (A2) there exists a constant K such that :
|§§xzz ! | 9 - = :~‘.
< Kly— R’ <t<T. NN
Th) = b—xP VxyeB, vO<t<T i
Suppose U(y) — U(x) > 0 and (VU(x), y—x) < 0. Then [U(y) — U(x)] < [f(x,y)] s

and since |1 —e*] < k|forx <0

.....................................

......
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3 U(y) — U(x :
b(x’}'at) - s(x’Yrt)I = [l —exp|— _(u

T(t) .

%
- [uy) — U %

- T(t) ¥

f(x

< S| |

- T(t) :-_-.

<Kb—xf  VxyeR, vo<t<T. 3

The same inequality holds if U(y) — U(x) < 0 and (VU(x), y—x) > 0. Suppose :'.: ;
that U(y) — U(x) > 0 and (VU(x), y—x) > 0. Then :'.': 1

7

o
b(xry’t) - §(X)Y7t)l < 1 —exp Jﬁ_ll))l], N‘.

< Myl =

= T(t) o
<K'l—xP VxyeR, vo<t<T. ‘-F

NS

The Lemma follows by combining the various cases. O N
\-I‘

The following two Lemmas provide the crucial estimates of the local drift \'.
b,(*,*) and local covariance a(*,*) of z,(*). The simple estimate A
[ P dN(0,e]) (y) = O(e*/?)  as e—0 i

for n€N will be used frequently in the sequel. }_‘,:
Lemma 4.2 Assume (A1), (A2). Then ,v_
b.(x,t) = — VU(x(t)) + O(e!/?) as e—0, A

27T (t) o0

uniformly for x€R, 0 < t < T. o
Proof By Lemma 4.1 there exists a constant K such that “::
b(oy,t) — s0yt) <K= vxyeR, vo<t<T. 33
-

Hence '
f__-“
e

o
<0

vf\-
4
o
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b () = ¢ [ (=) P.(x.dy.t)
= = ] ) stxy,t) dN(xel) (5)
- % [ (y—x) 8(x,y,t) dN(x,€]) (y)
+ _1_ [ (v=x) [s(x,y,t) - §(x,y,t)]dN(x,€I) (v)
=1 f (y=x) 3(x,y,t) dN(x,€I) (y) + O(e'/2) as e—0,

uniformly for x€R  and 0 < t < T. Substituting for §(*,*,*) from (4.12) gives

1
b(x,t) = 1/2 f y dN(0,I) (y)
€77 (5,VU(x)<0

e R b et L R CORNC

(y,9YU(x))>0
as €—0, uniformly for x€R" and 0 < t < T. Clearly,
\48)
b, (x,t) = — —2;17(%1 + O(e'/?) as €—0

uniformly on {x€R: VU(x)=0}x[0,f]. Hence we may assume that
VU(x) # 0 for all x€R". Let

ofx,t) = —;— ; (4.14)

vu)| [ VU(x) P
() ] 7t = Ty

for all x€R' and t > 0. By (Al), (A2) of,,) and f(,") are bounded on
RB'x[0,T]. Now completing the square in the second integrand in (4.13) gives
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1 )
bxt) ==z [ ydN(OI)(y)
€% (,90t)<0 e
+ —%2— ) y exp(a(x,t)e) AN {— VU(x) /2 1| (y) + 0('/?) -
€77 (y,vU(x)20 T(t) )
1 1
==z [  ydNO) @)+ J y dN(O,T) (y)
€7 (3.VU)<0 € VUM)2A(x,t)e V2
- ORI NOD s (:7UR) 2 Bt + Ol :
L J
= — 2 vy, 0(/) :
T(t) -
1 -
+ < [((TURL0/%) - (TU(R)0) + O/, (4.16) ;
®
as e—0, uniformly for x€R® and 0 < t < T, where -3
f(u,6) = N(0,]) {y : (y,u) > 6},
g(u’é) = f y dN(O,I) (Y) . ®
(y,0)=[uls %
To proceed further we need to estimate f(*,’) and g(*,"). We have
f(u,8) = N(0,]) {y : (y,u) > lulé} .
= N(0,1) [6,00) 4
6 .
1 1 -§72 34 o
2 i s«
1 ®
=5 + O(9) as 6—0, (4.17) N
uniformly for u€R". As for g(*,*), we make the following
Claim o
e ¥ u :
g(u,0) = 27 Tu (4.18) :

for all 6 > 0 and u€R"\{0}.
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b
Suppose the Claim is true. Then combining (4.16)-(4.18) gives :::‘::
VUx) , %9 -1 Vux) ey
b x,t = — - + O EX/? -'\\L
1) 2T(t) (2me)t/?  [VU()] (€7 j:‘;
Lo,
AC(CI R O(e!/?)  as e—0, 25
27T(t) ALY,
uniformly for x€R" and 0 <t < 'f, and we obtain the Theorem. It remains to a
prove the Claim. e

Proof of Claim Fix u€R"\{0}, let

Yoo .

o :
1= 77 X
fu i)
and extend n,; to an orthonormal basis {nl,,,,,nr} for K. Also let {el,,_,,e,} be \j__{

the standard basis for R", and L(*) be the (orthogonal) linear mapping from B :‘.:f

into R' such that L(e;) = n; for all i = 1,..,r. Applying the change of variable ’

formula and using the fact that L(*) is an isometry and the adjoint N

L(") = L) gives Y
gwd = [ ydNOID([y) 54

(y:u)2|“|6 o

r AN

(y,my)28 i=1 RO

r LR

= > o f (Lz,n;) AN(0,I) (z) "":"":

i-l (Lz,nl)ZJ .

o

T . ‘.__:..

= Y p f (z,L n;) dN(0,I) (z)

i=1 (s,L'n))>é J\

=Sn [ (ze) dNOI (2) P

i=l  (ze)>6 ‘- ®
RAFY

=n; [ £dN(0,1) (§) n)
d it

00 1 :'.::';

= [€- wpﬂfvﬂdﬁ =%
s (2m!/? PRN
e~62 u :.. ..:-:

= —— — vé>0.
(2m)'/2 ul

This completes the proof of the Claim and hence the Theorem. O
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Lemma 4.3 Assume (Al), (A2). Then
a(x,t) =14+ 0(/?)  as e—0
uniformly for x€R* and 0 < t < T.

Proof Proceeding as in the proof the Lemma 4.2

adxt) = = [ (0@ (y—x) P,(x.dy.t)
= % [ =)@ (y—x) 8(x,3,t) AN(x,€]) (¥) + O(e)

= [ y®ydN(0]) (y)

(y,VU(x))<0

A [_LV_UBLxlex/z

(7, VU(x))>0 T(t)
as €—0, uniformly for x€ER  and 0 < t < T. Clearly,

dN(0,I)(y) + O(¢)  (4.19)

a(x,t) =1+ 0O(e) as €e—0

uniformly on {x€R': VU(x) = 0}x[0,T]. Hence we may assume that
VU(x) # 0 for all x€R". Let o), B(*,') be defined as in (4.14). Then
completing the square in the second integrand in (4.19) gives

a(x,t)= [ y®ydN(0,]) (y)
(v.VU(x))<0
[ y®yexn (afx)e) dN [~ S2EL a2 1) 4 o(g
(v, 90(x))20 T(t)
= [ yQ®ydN(0]) (y) + f y®y dN(0,I) (y) + O(e'/?)
(y,VU(x))<0 (y,VU(x))=B(x,t)e Y2
= h(VU(x),0) + h(VU(x),0(¢!/%)) + O(¢}/?), (4.20)

as €é—0, uniformly for x€ER  and 0 < t < T, where
h(y,d) = [ y®ydN(O]) (y).

(y,u)>ufé

To proceed further we need to estimate h(*,"). We make the following
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Claim
h(u,6) = % I+0(5) as 6—0, - (4.21)
uniformly for u€R’.
Suppose the Claim is true. Then combining (4.20) and (4.21) gives

a,(x,t) =1 4+ O(e!/?) as ¢—0,

uniformly for x€ER" and 0 < t < T, and we obtain the Theorem. It remains to
prove the Claim.

Proof of Claim Fix u€R'\{0} ard let {n,,...,n,}, {e},...,e;}, and L(*) be as in
the proof of the Claim in Lemma 4.2. Then

h(u,0) = [ y®y dN(O,I) (y)

(y,u)20
- [éw,noni]@[z':(y,n,«)nj NGO ()
(yn)>0 |i=1 =1

= % 0®n, [ (Lzny) (Lzny) dN(O,D) ()

l,]-l (Lz,n1)20

r * .
= ¥ n® n; f (z,L n;) (z,L nj) dN(0,I) (¥)
ij=1 (z,L'n))>0

= % 0®n; [ (se) (2e) dNO]) (v)

i,j=1 (z,e1)=0

= 0®n [ (ne)? ANO ()

i=1 (z,e)>0

= n,®n, [ € dN(01) (§) + 3 5,®n, N(0,1) 0,%0)
0

i=2

|
Nalr—n

Zrl 0;® 1,
jem1

(4.22)

If
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L]

Similarly,

L
’ ',' x '\. 'l..\ l

N

\- W \. ". _'..
[}

P L P

.

)

A
.. .l ‘. .' "4..

R A A AN
tl‘.'i'\"i'l\‘\' -
I-'-'-’d'ft“

.« .
.
ey

!

. LI P e U
. D
]

.
Vo
L)

ERANL NN
(Y

)

e
iy Ty

2 L I I )
» P
=* \® 5 5%

.
LI S

t Sl
fY S

4 e e .
AT S S |
a s

ee s T
A
,d . .

e
Fofs
L L

4
-‘:k

,-.'l(.'l
PR S )

S,
s

el




h(u,0) — h(u,d) = f y&y dN(0,I)

0<(y,u)<luls
=Y o®n [ (ne) dN(O]) (2)
im1 0<(z,e))<é

6 r
= 0,®n, [ £dN(0,1) (€) + ¥ n®n, N(0,1) [0,5)
0

i=2

§
=1n,@n, f €2 ! % eXP (— € /2)d€
0

(27)
r 6
+£m®m£65mwmbiyﬂ%

= 0,®0,0(8) + 3 0,®n,  O(6)

1=2

= 0() as 6—0. (4.23)

Combining (4.22) and (4.23) completes the proof of the Claim and hence the
Theorem. O

Lemma 4.4 Assume (Al), (A2). Then
o, (x,t) = I + Ole!/?) as e—0
uniformly for x€R* and 0 < t < T.
Proof By Lemma 4.3
a,(x,t) = I + O(e'/?) as €—0 (4.24)

uniformly for x€R" and 0 <t < T. Since a(x,t) is self-adjoint, there exists an
orthogonal matrix L(x,t) such that

a,(x,t) = L (x,t) A(x,t) L.(x,t) (4.25)
where

Adxt) = diag (N 1(%,t),.. 8 (X)) (4.26)

and the{X ;(x,t) : i=1,.,r} are the eigenvalues of a(x,t), i.e., the solutions
of det(\l — a (x,t)) =0. Now if A = [a;]] is a real rxr matrix then det A may
be expressed as

v
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det A= ¥ sgn(p)agp, * a, (4.27)
p = \pleP

where P is the set of permutations of {1,,,,,r}. Setting A = N — a (x,t) and
combining (4.24) and (4.27) gives

det(\I — a,(x,t)) = (A — 17 + (A — 1) O(e!/2) 4 =+ + O(€/?)
and so
N i(xt) — 1F = O(max{[x, j(x,t) — 1~ e/t /7))
and consequently
Mi(x,t) =1 + O(e!'?),
and since (1 + 82 =1 + O(8) as 6—0,
MNE2xt) =1+ 0(e?)  as e—0, (4.28)
uniformly for x€ER  and 0 < t < T. Let
0,(x,t) = L (x,t) AM*(x,t) L,(x,t) -

Then by (4.25) a,(x,t) = o (x,t) 0.(x,t), and by (4.26), (4.28), and the Schwartz
inequality,

o(x,t) = I + O(e!/?) as €—0,
uniformly for x€R" and 0 < t < T, as required. O
Proof of Theorem 4.2 We shall apply Theorem 4.1 with & = z,
€(*) = z() &(*) = 2(*), and

Fxt) = — &L R (xt) = b,(x,t)
27T(t)
G(x,t) =1, G (x,t) = o.(x,t) .
In view of (A1), (A2) and Lemmas 4.2 and 4.4, (K1) and (K2) are satisfied.

Now by Lemmas 4.2 and 4.4 there exists a constant ¢ such that for small
enough ¢ > 0

VU!X) < 1/2
mhﬂ+2ﬂQLﬁf,

lo.(x,t) = 1] < e €!/7,

for all x€R* and 0 < t < T. Hence
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K
D
&
o
[T/c] W(z()
W, k ¢
: E kz-:l Ib((zﬁ,ke) + MIL’ + IO’((zk,kE) - I|2 €
‘
.."
o
ol
" < 2 2ckt (e small)
't k=1
&
1)
\
N
< 2¢2Te — 0 as e€—{
I
:J; and so (K3) is satisfied.
“ It remains to check (K4). Since Pg(*,’) is a conditional distribution
:' function for 2z, given z; we have that for every n€N
~
: E{laiar — 2P} = B{E(lst1 — 2P 1))
=E{J Iy — 2P P(si, dy)}
: < E{[ yPUN(,e1) ()}
i E S ¢y E1.'|/2
. for some constant c;,. Hence using the uniform boundedness of b(*,*) for
. small €
-' 2 o2 |
. El 3 |zfe1 — 25 — b(zike)ef [< S d€® (e small) '
k=1 k=1
\]
f
. <dT - e—0 as e—0 ;
N
, for some constant d, and so (K4) is satisfied with @ = 2. The Theorem now o
' follows from Theorem 4.1. O y
. ;
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4.3 Hybrid Annealing/Langevin Algorithm

In this Section we shall give a hybrid annealing/Langevin algorithm
whose initial behavior resembles that of the annealing algorithm and whose
large time behavior is similar to the Langevin algorithm. The development of
this algorithm will be guided by Kushner’s algorithm and the results of 4.2 on
the relationship between the annealing algorithm and the Langevin algorithm.
We note that the discussion in this Section is heuristic at points and more
work need to be done.

We shall make use of the notation introduced in 4.1, 4.2. We shall
assume that

C

T(t) = t1
0= o7 (tlaree)
where ¢ is a positive constant.
We start by considering Kushner’s algorithm (4.6) with b(x,§) = — VU(x)
and o(x) =1, i.e.,
Xerr =X — 2, VUK + V2 a,w, (4.29)
where
ay = — (k large) .
log k

Kushner [21] has shown (roughly) that if ¢ is large enough and the sample
paths {X,} are bounded with probability one by some device, then X,
converges to S in probability.

Now consider the discretization (4.5) of the Langevin algorithm (4.1) with
discretization interval ¢, i.e.,

e = x5 — € VU(xg) + \/2—T(ke)e Wy . (4.30)
Interpolate {x;} into x,(*) with sample paths in D"[0,00) by
x(t) = x§ V (k—1)e <t < ke, YV kE€N.

An application of Theorem 4.1 under assumptions (A1), (A2) of Theorem 4.2
shows that

x (') = x(*) weakly (inD'[0,x)) as e—x.

Suppose in (4.30) we replace the fixed discretization interval « by a,. a0
accumulated time ke by
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k-1
tk = E ay, .,

D=1

and define

Xer1 = Xi — 2 VUKL + V2T (t)ag wy -
By L’hopital’s rule and the Fundamental Theorem of Calculus

c c c
1 og k
log 3 a, log [ dx
n=1 » log x
as k—o00. Hence we may write
ik+l = ik — ag V U(ik) + \/5 ikwk (4.31)

where i ~ a,. In view of (4.29) and (4.31) it seems clear that we may
identify {X,} and {X,} as essentially the same algorithm, and so we can view
{Xy} as arising from a discretization {x{} of the Langevin algorithm x(*) with
a nonstationary discretization interval € = a,, at least for k large enough.
Note that the weak convergence of x,(*) to x(*) in DF[0,00) as €e—0 does not
imply that {X,} and x(*) (and presumably {X;} and x(*)) have ‘“close”
asymptotic measures, from which we might conclude that the convergence of
Xy to S in probability as k—oco follows from the convergence of x(t) to S in
probability as t—oo (c.f. [23] for a discussion of asymptotic measures and the
rélationship to weak convergence). However, the weak convergence of x,(*) to
x(*) in D*{0,00) as e—0 and the convergence of x(t) to S in probability as
t—00 does provide a certain intuitive basis for the convergence of X; to S as
k—00 in probability, which infact Kushner proves.

Using the above interpretation of Kushner’s algorithm (4.29) as a certain
discretization of the Langevin algorithm (4.1) we now proceed to construct a
hybrid annealing/Langevin algorithm. For each ¢ > 0 define an R'-valued
discrete parameter process {y;} as follows. Let

Yi+1 = YE + V2T(ke)e my wy

where {m{} is a sequence of {0,1}-valued random variables such that m{ is
conditionally independent of yj,...,yi_;, Wy,...,Wyx—;, and mj,.,mg_; given
¥i, Wy, and

ST e R e e e e e e Y e e e T e e T e L e e e
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S
L))
0%
—_— !
P{m‘ _ llyc _ Wy = W} = expl— [U(y-'- 2T(k€)€ W) - U(Y)]-f-
. k k=Y, Wy P T(ke) ) :::w
v
\ where we use the notation [a], = max{0,a} for a€R A calculation shows that {:"
o {vi} is a Markov chain and N
P{yi1€ANL = v} = [ si(y,2) dN(y,2T(ke)el) (z) + F(z) §(2,A)  (4.32) S0y
A NOY
for all yER® and A€B', where s{(*,") is given by (4.8) and 3{(*) is given by the :E:E
r.h.s. of (4.9) with el replaced by 2T(ke)el. Comparing (4.32) and (4.7) we see 2'::
that {yf} like {z{} is an annealing chain driven by white Gaussian noise, >
except that the noise driving {yf} is nonstationary with covariance 2T (ke)el. N <
Interpolate {y{} into y,(*) with sample paths in D*[0,00) by :':-_:.,-
Y
) =¥i  Vk-l)e<t<ke, V kel 2
Oy
In Theorem 4.2 we gave conditions such that " «
- A0,
2,(*)—z(*) weakly (in D'[0,T]) as e—0; "‘;E )
*'-
A minor changes in the proof of Theorem 4.2 show that o~
'
Y()—x(*) weakly (in D'[0,00)) as €e—0 '
3 under the same conditions. ‘\._ 5
Now define an R'-valued discrete parameter random process {Y,} as :}_::‘;
follows. Let ety
KoY
Y = Y + V2 a,Myw, )
RRASA
where {M,} is a sequence of {0,1}-valued random variables such that M, is SR
conditionally independent of Yy,..,Y, ;, wy,..,Wi_;, and M;,...,M,_; given ::.’-:"
Yy, W, and N
Ul + V2 aw) — Uyl =
P{My =1[Y; =y, w, = w} = exp|~— : S
ayx S
:'.::\.:
By similar reasoning as with {X;} we may view {Y,} as arising from a ::'.:::-
discretization {yg} of the Langevin algorithm x(*) with a nonstationary Y
discretization interval € = a,, at least for k large enough. We shall call the T
A algorithm which simulates the sample paths of {Y,} the hybrid :::::
annealing/Langevin algorithm. ::::,ﬂ_
| We shall now make a few comments concerning the convergence of the '_':‘::
hybrid annealing/Langevin algorithm. The weak convergence of y(*) to x(*) o ®
in D'[0,00) as e—0 and the convergence of x(t) to S in probability as t— o ::.?.‘;::
s
:-';-l'
A
o
a2l
'..‘.-’.:"
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> o

does provide an intuitive basis for the convergence of Y} to S in probability as
k—oo. This intuition is further bolstered by the convergence of X, to S in 4
probability as k—oo. Unfortunately, we have not been able to establish the
convergence of {Y,}. One approach which might be fruitful is to try to adapt
Kushner’s proof of the convergence of {X;} (we have not tried this). Our idea

which we did not succeed in developing was to try to obtain the asymptotic o
behavior of the {Y,} process directly from the asymptotics of the related x(*) p
process. This is similar in some respects to the associated ODE method used o
to analyze stochastic approximation algorithms (c.f. [24]), whereby the A
asymptotics of the stochastic approximation algorithm are obtained from the
asymptotics of the “limit’ process which satisfies an ordinary differential !
equation. However in our problem the “limit” process x(*) satisfies the
stochastic differential equation (4.1). Without going into details it now o
appears to us that the nonstationarity of x(*) makes it very difficult (if not N,
impossible) to extend the associated ODE method to prove convergence of .
{Yi}. °
It is interesting to compare the 1-step transition probabilities for {X;} :
and {Yy}. Let N(m,A)(*) be an r-dimensional Gaussian density with mean m R
and positive definite covariance A, i.e. ]
. ) )
N(m,A)(&) = *ex [— —m, A™}é—m 2] L)
( 4 )(6) (27r)’/2(det A)llz P (& (& ))/ ) S
for all £ER'. Then we may write 3
P{Xy €A, = n} = [ £(n,€) d€ :
A
[
P{Y\1€AIY, = n} = [ g(n,€)d€ + 3(n) &(n.A) 3
A h
for all nER" and AEB", where ;.:
2(1,€) = N(n+a,VU(1),22{1) (€) =
>
[U(§) — U() -
§(6) = exp {— — o [N (9 :
oA
Mn) =1 — [ g(né§) d§ .
»
for all n, (ER". In Figure 4.1(a) we show a bimodal U(*) defined on R. The o
points §;, §;, &3 are solutions of U(§) = U(n) for a fixed n. In Figure 4.1(b) we 9
sketch f(7,”). In Figure 4.1(c) we sketch g(n,"); we also show the unweighted ‘
Gaussian density N(r),2af) (*) and the atom at 7 with mass (7). These L J
%
3
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“‘semilocal” behavior of the hybrid annealing/Langevin algorithm as discussed

figures make clear the “local” behavior of the Langevin algorithm versus the

in 4.1.
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CHAPTER V
CONCLUSIONS

5.1 Summary of Results
We summarize the results of this thesis as follows.

(i) We analyzed the rate of convergence in probability of the annealing
chain for a special case of an energy function with two local minima. We
obtained convergence rates for nonparametric temperature schedules
(Theorem 2.8), and also for parametric temperature schedules Ty = c/log k
for ¢ > A’ where A’ is Hajek’s optimal constant (Corollary 2.2). There are
two factors which limit the rate of convergence in probability. One factor
corresponds to the rate at which the annealing chain makes transitions from
one local minimum to the other and back. For temperature schedules
Ty = ¢/log k this factor dominates whenever ¢ >A'. The other factor
corresponds to the rate at which the annealing chain makes its first transition
from the strictly local minimum to the global minimum. For temperature
schedules T, = c¢/log k this factor is only important when ¢ = A'. We gave
explicit expressions for the characteristic time scales associated with each of
the rate limiting factors.

(i) We analyzed the sample path properties of the annealing chain. We
gave conditions such that the annealing chain visits the set S of globally
minimum energy states with probability one (Theorem 2.9), visits S with
probability strictly less than one (Theorem 2.10), and converges to S with
probability one (Theorem 2.11).

(iii) We gave a modification of the annealing algorithm so as to allow for
noisy measurements of the energy differences which are used in selecting
successive states. This is important when the energy differences cannot be
measured exactly or when it is simply too costly to do so. We focused on the
case when at the k' time step the energy difference between the candidate
and current states is measured with additive Gaussian noise with mean 0 and
variance of. We showed that if o = o(TJ) then the asymptotic behavior of
the modified annealing algorithm is essentially the same as that of the
unmodified annealing algorithm (Theorem 2.12, Corollary 2.3).
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(iv) We extended the annealing algorithm for optimization on general
spaces. We generalized our result on the finite state annealing chain visiting
the set S of globally minimum energy states with probability one (Theorem
2.9) to the general state annealing chain visiting a neighborhood of S$ with
probability one (Theorem 3.4), essentially under the conditions that the state
space be a compact metric space and the energy function be continuous.

(v) Our most important results concern the relationship between the
annealing and Langevin algorithms. We showed that a parametric family of
annealing chains driven by white Gaussian noise and interpolated into
piecewise constant processes converge weakly to a time-scaled Langevin
diffusion (Theorem 4.2). Although both the annealing chain and Langevin
diffusion at a fixed temperature have a Gibbs invariant measure, the weak
convergence seems to us to be a rather surprising result. Motivated by this
convergence result, we proposed a hybrid annealing/Langevin algorithm,
whose small time behavior resembles that of the annealing algorithm and
whose large time behavior is similar to the Langevin algorithm.

5.2 Open Questions
We list here some questions which naturally follow from our work.

(i) Is their an extension of Theorem 2.8 and Corollary 2.2 on the rate of
convergence in probability of an annealing chain with an energy function with
two local minima to energy functions with an arbitrary number of local
minima? Also, in Theorem 2.8 do the conditions (2.54), (2.55) suggest the
kind of regularity in the temperature schedule which guarantees fast
convergence (recall that only (2.53) is required for convergence)? Also, in view
of the relationship discussed in Chapter 4 between the annealing and
Langevin algorithms, is it possible to establish rates of convergence similar to
those in Theorem 2.8 and Corollary 2.2 for the Langevin algorithm with a
smooth energy function with two local minima?

(ii) Does the general-state annealing chain converge in probability to the
set of globally minimum energy states, assuming only that the state space is a
compact metric space, the energy function is continuous, and suitable
conditions on the temperature schedule?

(iii) Finally and most importantly, does the hybrid annealing/Langevin
algorithm converge, and does it indeed improve on the performance of the
annealing and Langevin algorithms?
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